簡易檢索 / 詳目顯示

研究生: 董俊偉
Christianto
論文名稱: 非線性靜力側推分析與非線性增量動力分析之轉換關係研究-以T型中高樓扭轉不規則建築結構為例
Seismic Assessment of T-Shape Irregular Middle to High-Rise RC Building - Correlation between SPO 2 IDA
指導教授: 劉光晏
Liu, Kuang-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 190
外文關鍵詞: Irregular buildings in high-rise buildings, Static Pushover Analysis, Incremental Dynamic Analysis, SPO2IDA
相關次數: 點閱:74下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • According to the Seismic Design Code for Building in Taiwan, buildings with higher floors, vertical irregularities, or plan irregularities need to be evaluated for seismic performance by nonlinear dynamic analysis. However, performing nonlinear dynamic analysis and higher labor costs takes a long time. Therefore, this study investigates the seismic performance of T-shaped middle to high-rise building. Evaluate its seismic performance by performing the Static Pushover (SPO) analysis and Incremental Dynamic Analysis (IDA), and provide the correlation between SPO2IDA. First, use pushover analysis to evaluate the seismic performance of the T-shaped buildings with different span ratios, and compare the results of the ASCE 41-13 default plastic hinges and the TEASPA V4.0 plastic hinges developed by the National Center for Research on Earthquake Engineering (NCREE) and Sinotech Engineering Consultants Incorporation (SEC). Then use probabilistic assessment presented by previous researchers to discuss the seismic performance of T-shaped buildings with different span ratios. And compare the results of the ASCE 41-13 default plastic hinges and the TEASDA plastic hinges developed by the NCREE. Then apply the pushover analysis results to the SPO2IDA Excel workbook presented by previous researchers. The comparing results show that the existing conversion methods for T-shaped middle to high-rise buildings cannot correctly use the SPO curves to simulate the IDA curves. Therefore, this study chooses the SPO2IDA Excel workbook to improve its conversion relationship and proposes different correction methods and formulas for other plastic hinges. The research results show that using the improved SPO2IDA Excel workbook for T-shaped middle to high-rise buildings can make the conversion results closer to the actual IDA curves.

    ABSTRACT I ACKNOWLEDGEMENT IV TABLE OF CONTENTS V LIST OF TABLES VIII LIST OF FIGURES XII CHAPTER 1 INTRODUCTION 1 1.1. Research Backgrounds 1 1.2. Research Motivation and Purposes 1 1.3. Scope of Project 2 CHAPTER 2 LITERATURE REVIEW 4 2.1. Historical Review of Earthquake Disasters 4 2.1.1. Chichi Earthquake (1999) 4 2.1.2. Meinong Earthquake (2016) 4 2.1.3. Hualien Earthquake (2018) 5 2.2. Discussion on The Cause of Structural Damage of Middle to Highrise Buildings 6 2.2.1. Structural non-Ductile Reinforcement 6 2.2.2. Weak Bottom Layer 6 2.2.3. Torsion Effect 6 2.3. Nonlinear Static Pushover Analysis 7 2.3.1. Establishment of The Seismic Performance Curve 8 2.3.2. Bilinearization of the Equal Energy Principle 11 2.4. Nonlinear Dynamic Analysis 12 2.4.1. Code for seismic design of buildings 12 2.4.2. Probabilistic Collapse Assessment Method for Medium and High-Rise Buildings 13 2.5. Discussion on SPO2IDA Modification 23 2.6. Introduction to Analysis Software 26 2.6.1. SPO2IDA 26 2.6.2. ETABS 32 2.6.3. TEASPA 32 2.6.4. TEASDA 33 2.6.5. Quakemanager 34 CHAPTER 3 NONLINEAR PUSHOVER ANALYSIS 58 3.1. Basic Information of Buildings 58 3.2. Analysis Model Establishment 58 3.2.1. Model Group 59 3.2.2. Structural member information 59 3.2.3. ASCE 41-13 Plastic Hinge Setting Model 61 3.2.4. TEASPA Plastic Hinge Setting Model 62 3.3. Vertical Distribution Type of Lateral Force 64 3.4. Plastic Hinge Verification 66 3.4.1. ASCE 41-13 Plastic Hinge Verification 66 3.4.2. TEASPA Plastic Hinge Verification 67 3.4.3. Comparison of ASCE 41-13 Plastic Hinge and TEASPA Plastic Hinge 70 3.5. Performance Target Criteria 71 3.6. Pushover Analysis Results 71 3.6.1. Comparison of Pushover Analysis Results 72 3.6.2. Set the Pushover Analysis Results of the ASCE Plastic Hinge Model 73 3.6.3. Set the Pushover Analysis Results of the TEASPA Plastic Hinge Model 74 3.6.4. Comparison of Type 1:1, Type 1:1.5 and Type 1:2 Models 75 CHAPTER 4 NONLINEAR INCREMENTAL DYNAMIC ANALYSIS 112 4.1. Establishment of Analysis Model 112 4.1.1. Model Group 112 4.1.2. ASCE 41-13 Plastic Hinge Setting Model 113 4.1.3. TEASDA Plastic Hinge Setting Model 114 4.2. Plastic Hinge Verification 115 4.2.1. ASCE 41-13 Plastic Hinge Verification 115 4.2.2. TEASDA Plastic Hinge Verification 117 4.2.3. Comparison of ASCE 41-13 Plastic Hinge and TEASDA Plastic Hinge 120 4.3. Selection of Earthquake Duration 120 4.3.1. Target response spectrum 120 4.3.2. Selection and Scaling of Earthquake Duration 121 4.4. Collapse Failure Criteria 122 4.5. Collapse Capacity Performance Index 123 4.6. Incremental Dynamic Analysis Results 124 4.6.1. Set the Incremental Dynamic Analysis Results of The ASCE Plastic Hinge Model…. 124 4.6.2. Set the Incremental Dynamic Analysis Results of The TEASPA Plastic Hinge Model…. 125 4.6.3. Comparison of Type 1:1, Type 1:1.5 and Type 1:2 Models 126 CHAPTER 5 CONVERSION RELATIONSHIP BETWEEN PUSHOVER ANALYSIS AND INCREMENTAL DYNAMIC ANALYSIS 161 5.1. Comparison of Pushover Analysis and Incremental Dynamic Analysis Results 161 5.2. Analysis Results Using SPO2IDA Workbook 162 5.3. The Modified SPO2IDA Workbook is Applied to T-Shaped Medium and High-Rise Buildings to Reverse Irregular Buildings 163 5.3.1. Adjustment Steps 163 5.3.2. Fitting Results 166 5.3.3. Collapse Capacity Performance Index of Fitting Results 167 CHAPTER 6 CONCLUSION 184 6.1. Conclusion 184 6.2. Suggestions for Future Study 185 REFERENCES 187 APPENDIX 189

    ASCE. (2007). Seismic rehabilitation of existing building : ASCE 41-06. American Society of Civil Engineers.
    ASCE. (2013). Minimum design loads for buildings and other structures, American Society of Civil Engineers: ASCE 7-10. American Society of Civil Engineers.
    ASCE. (2014). Seismic Evaluation and Retrofit of Existing Buildings: ASCE 41-13. American Society of Civil Engineers.
    ATC. (1996). Seismic Evaluation and Retrofit of Concrete Buildings (Vol. 1). Applied Technology Council.
    Baker, J. W. (2015). "Efficient Analytical Fragility Function Fitting Using Dynamic Structural Analysis". Earthquake Spectra, 31(1), 579-599. https://doi.org/10.1193/021113eqs025m
    Base, C. K. (4 April 2021). Modal analysis (March27,2019) https://wiki.csiamerica.com/display/kb/Modal+analysis
    Chopra, A. K. (2007). “Dynamics of structures, Theory and Applications to Earthquake Engineering, Third edition”. Pearson Prentice Hall, Inc.
    Fajfar, P. (2000). A Nonlinear Analysis Method for Performance-Based Seismic Design. Earthquake Spectra, 16(3), 573-592. https://doi.org/10.1193/1.1586128
    FEMA. (1997). NEHRP Guidelines for the Seismic Rehabilitation of Buildings: FEMA 273. Federal Emergency Management Agency.
    FEMA. (2000). Prestandard and Commentary for the Seismic Rehabilitation of Buildings: FEMA 356. Federal Emergency Management Agency.
    FEMA. (2009). Quantification of Building Seismic Performance Factors: FEMA P-695. Federal Emergency Management Agency.
    FEMA. (2012). Seismic Performance Assessment of Buildings. Federal Emergency Management Agency.
    Kreslin, M., & Fajfar, P. (2010). Seismic evaluation of an existing complex RC building. Bulletin of Earthquake Engineering, 8(2), 363-385. https://doi.org/10.1007/s10518-009-9155-0
    Medina, R., Krawinkler, H. (2003). Seismic Demands for Nondeteriorating Frame Structures and their Dependence on Ground Motions (John A. Blume Earthquake Engineering Center Technical Report 141., Issue.
    PEER. (2010). Modeling and acceptance criteria for seismic design and analysis of tall buildings: PEER-TBI Task7.
    Robert K. Dowell, F. S., & Edward, L. W. (1998). Pivot Hysteresis Model for Reinforced Concrete Members. ACI Structural Journal, 95(5), 607-617. https://doi.org/10.14359/575
    Takeda, T., Sozen, M. A., & Nielsen, N. N. (1970). Reinforced Concrete Response to Simulated Earthquakes. Journal of the Structural Division, 96(12), 2557-2573. https://doi.org/doi:10.1061/JSDEAG.0002765
    Vamvatsikos, D., & Allin Cornell, C. (2006). Direct estimation of the seismic demand and capacity of oscillators with multi-linear static pushovers through IDA. Earthquake Engineering & Structural Dynamics, 35(9), 1097-1117. https://doi.org/https://doi.org/10.1002/eqe.573
    丁育群、黃文曲. (2016). 九二一地震住宅重建回顧.
    中華民國內政部營建署. (2011). 建築物耐震設計規範與解說.
    凌于哲. (2019). 鋼筋混凝土柱遲滯迴圈之模擬研究 國立台灣大學].
    勇凱、周德光、蕭輔沛. (2011). 空間構架單一模態側推分析之探討 (國家地震工程研究中心報告, Issue.
    國家地震工程研究中心. (1999). 九二一集集大地震全面勘災精簡報告.
    國家地震工程研究中心、中興工程顧問社. (2020). 臺灣結構耐震評估側推分析法 TEASPA v4.0 線上服務網頁使用手冊.
    國家災害防救科技中心、國家地震工程研究中心. (2016). 0206 地震災情彙整與實地調查報告.
    李巧謹. (2021). 非線性靜力側推分析與非線性增量動力分析之轉換關係研究-以C型中高樓扭轉不規則建築結構為例 成功大學].
    林冠禎、邱毅宗、宋裕祺、蔡益超. (2015). 通報028:SERCB V5.1版後處理更新功能-結構容量震譜降伏點計算原則. 頁8-14.
    胡瑋秀. (2018). 台灣混凝土彈性模數折減對結構相關設計規範的影響研究 國立臺灣大學].
    蕭輔沛、蔡仁傑、翁樸文、沈文成、徐侑呈、周德光、翁元滔、簡文郁、林佳蓁、劉勛仁. (2021). 臺灣鋼筋混凝土結構耐震評估非線性動力分析手冊(TEASDA V1.0).
    謝瑋桓. (2018). 中高樓建築機率式耐震與倒塌風險評估之研究 成功大學].
    謝瑋桓、盧煉元、蕭輔沛、湯宇仕、黃尹男. (6月刊 2018). 中高樓結構機率式倒塌風險評估法之應用研究. 三十三卷(第二期), 頁89-120.
    邱聰智、蕭輔沛、鍾立來、翁健煌、李其航、劉建均、薛強、何郁姍、陳幸均、楊智斌、翁樸文、沈文成、涂耀賢、楊耀昇、李翼安、葉勇凱、黃世建. (2018). 臺灣結構耐震評估側推分析法(TEASPA V3.1) (國家地震工程研究中心報告, NCREE-18-0155, Issue.
    邱聰智、鍾立來、涂耀賢、賴昱志、曾建創、翁樸文、莊明介、葉勇凱、李其航、林敏郎、王佳憲、沈文成、蕭輔沛、薛強、黃世建. (2020). 臺灣結構耐震評估與補強技術手冊(TEASPA V4.0) (國家地震工程研究中心報告,NCREE-20-005, Issue.
    黃婕瑜. (2021). 非線性靜力側推分析與非線性增量動力分析之轉換關係研究-以L型中高樓扭轉不規則建築結構為例 成功大學].

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE