簡易檢索 / 詳目顯示

研究生: 鍾明哲
Chung, Ming-Che
論文名稱: 以萊維飛行改良螢火蟲演算法及其應用於模糊控制器設計之研究
Study of Improved Firefly Algorithm with Lévy Flight And Its Application to Fuzzy Controller Design
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 86
中文關鍵詞: 螢火蟲演算法模糊控制器萊維飛行
外文關鍵詞: Firefly algorithm, Fuzzy controller, Lévy flight
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了基於萊維飛行之改良式螢火蟲演算法及其於模糊控制器之設計。良好的最佳化方法必須於探索與搜索之間取的一個良好的平衡,本論文修改標準螢火蟲演算法提出了「標準模式」改善搜索的效能,為了加強探索的能力修改萊維飛行螢火蟲演算法提出了「萊維模式」,透過模式切換的方式結合兩種行為模式的優點。本論文將所提出的改良式螢火蟲演算法,以常用的23個最佳化基準測試函數,進行模擬實驗,其中包含單峰值與多峰值測試函數,經過性能測試,從模擬實驗結果顯示改良式螢火蟲演算法與其他螢火蟲演算法比較,得到最佳解的次數較多且收斂性亦較佳。本論文再利用改良式螢火蟲演算法於非線性系統的模糊控制器參數最佳化,設計模糊控制器內所需之參數調整,使其參數最佳化,經由模擬結果證明提出方法之有效性與可行性。

    This thesis proposes an improved firefly algorithm that applies Lévy flight to standard firefly algorithm to achieve better performance in resolving global optimization problems. The application of designing fuzzy controllers is also examined. A good optimization method needs to have a well-balanced tradeoff between exploration and exploitation. We present the ‘‘Standard Mode’’ by modifying standard firefly algorithm to improve the effort of exploitation. In order to enhance the ability of exploration, we modify the Lévy-flight firefly algorithm and propose the ‘‘Lévy Mode’’. We combine the advantages of exploration and exploitation by mode switch between ‘Standard Mode’ and ‘‘Lévy Mode’’. The proposed improved firefly algorithm is successfully applied to resolve 23 benchmark problems of global numerical optimization, where both unimodal and multimodal functions are included. The simulation results show that the improved firefly algorithm in comparison with the others offers more opportunities to find the optimal solutions and has also superior performance in convergence rate. Finally, this study aims to figure out all the parameters of the fuzzy logic controller for four nonlinear systems. All the simulation results demonstrate the effectiveness and feasibility of the proposed schemes.

    第一章 緒論 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與目標 3 1-4 本文架構 4 第二章 螢火蟲演算法介紹 2-1 前言 5 2-2 標準螢火蟲演算法 Standard Firefly Algorithm (SFA) 5 2-2-1 螢火蟲生物特性 6 2-2-2 標準螢火蟲演算法的數學定義 6 2-2-3 螢火蟲演算法流程 8 2-3 萊維飛行螢火蟲演算法 Lévy-flight Firefly Algorithm (LFA) 11 2-3-1 萊維飛行 Lévy Flight 11 2-3-2 萊維飛行的數學模型 13 2-3-3 萊維飛行螢火蟲演算法的數學模型 14 2-3-4 萊維飛行螢火蟲演算法流程 15 第三章 改良式螢火蟲演算法介紹 3-1 前言 18 3-2 標準模式 19 3-3 萊維模式 20 3-4 模式切換 23 3-5 改良式螢火蟲演算法流程 24 第四章 基準測試函數試驗 4-1 前言 27 4-2 最佳化問題的定義 27 4-3 基準測試函數 27 4-3-1 單峰基準測試函數 28 4-3-2 多峰基準測試函數 30 4-3-3 特定維度的多峰基準測試函數 32 4-4 測試參數設定 35 4-5 基準測試函數試驗結果 38 4-5-1 單峰基準函數模擬結果 39 4-5-2 多峰基準函數模擬結果 44 4-5-3 特定維度的多峰基準函數模擬結果 50 4-6 比對近期的修正螢火蟲演算法 51 4-6-1 其他螢火蟲演算法於單峰基準測試函數的模擬結果 51 4-6-2 其他螢火蟲演算法於多峰基準測試函數的模擬結果 55 4-7 本章小節 58 第五章 控制系統最佳化模擬 5-1 前言 59 5-2 設計模糊控制器 59 5-3 倒單擺控制系統 64 5-4 卡車入庫控制系統 68 5-5 停船入港控制系統 72 5-6 台車倒單擺控制系統 76 5-7 本章小結 80 第六章 結論與建議 6-1 結論 81 6-2 建議 82 參考文獻

    [1 L. A. Zadeh, “Fuzzy sets,” Information Control, vol. 8, pp. 338-352, Jun.1965.
    [2] E. H. Mamdani, “Applications of fuzzy algorithms for simple dynamic plant,” in Proceedings of the Institution of Electric Engineers, vol. 121, no. 12, pp. 1585-1588, Dec.1974.
    [3] C.-Y. Chen, T.-H. S. Li, Y. -C. Yeh, and C.-C. Chang, “Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots,” Mechatronics, vol. 19, no. 2, pp. 155-166, Mar. 2009.
    [4] T.-H. S. Li, S.-H. Tsai, and M.-Y. Hsiao, “Robust H-infinityfuzzy control for a class of time-delay fuzzy bilinear systems with an additive disturbance,” International Journal of Nonlinear Sciences and Numerical Simulation, vol.10, no. 3, pp. 315-322, Mar. 2009.
    [5] M. H. Tayarani, X. Yao, and H. Xu, “Meta-heuristic algorithm in car engine design: A literature survey,” IEEE Trans. Evol. comput., vol. 19, no.5, pp. 609-629, Oct. 2015.
    [6] D. Wu and W. W. Tan, “Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers,” Eng. Appl. Artif. Intell., vol. 19, no.8 pp. 829-841, 2006.
    [7] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolutionary computation approaches to feature selection,” IEEE Trans. Evol. comput., vol. 20, no. 4, pp. 606-626, Aug. 2016.
    [8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182_197, Apr. 2002.
    [9] J. Huang, F. Ding, T. Fukuda, and T. Matsuno, “Modeling and velocity control for a novel narrow vehicle based on mobile wheeled inverted pendulum,” IEEE Trans. Control Syst. Technol., vol. 21, no. 5, pp. 1607_1617, Sep. 2013.
    [10] J. Huang, J. Qian, L. Liu, Y. Wang, C. Xiong, and S. Ri, “Echostate network based predictive control with particle swarm optimization for pneumatic muscle actuator,” J. Franklin Inst., vol. 353, no. 12, pp. 2761_2782, 2016.
    [11] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEEInt. Symp. Neural Netw., Dec. 1995, pp. 1942-1948.
    [12] L. Liu, Y. Wang, F. Xie, and J. Gao, “Legendre cooperative PSO strategies for trajectory optimization,” Complexity, vol. 2018, Apr. 2018, Art. no. 5036791.
    [13] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization bya colony of cooperating agents,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 26, no. 1, pp. 29-41, Feb. 1996.
    [14] D. Karaboga and B. Akay, “A comparative study of artificial bee colony algorithm,” Appl. Math. Comput., vol. 214, no. 1, pp. 108-132, 2009.
    [15] X. -S. Yang, “Firefly algorithm for multimodal optimization,” in International Symposium on Stochastic Algorithm, 2009 pp. 169-178: Springer.
    [16] X. -S. Yang, “Firefly algorithm, Lévy flights and global optimization,” in Research and Development in Intelligent Systems XXVI: Springer, 2010, pp. 209-218.
    [17] R. Arul, S. Velusami, and G. Ravi, ‘‘Chaotic firefly algorithm to solve economic load dispatch problems,’’ in Proc. Int. Conf. Green Comput., Commun. Conservation Energy (ICGCE), 2013, pp. 458–464.
    [18] S. Yu, S. Su, Q. Lu, and L. Huang, ‘‘A novel wise step strategy for firefly algorithm,’’ Int. J. Comput. Math., vol. 91, no. 12, pp. 2507–2513, 2014.
    [19] S. Yu, S. Zhu, Y. Ma, and D. Mao, ‘‘A variable step size firefly algorithm for numerical optimization,’’ Appl. Math. Comput., vol.263, pp. 214–220, Jul. 2015.
    [20] H. Wang, W. Wang, H. Sun, and S. Rahnamayan, ‘‘Firefly algorithm with random attraction,’’ Int. J. Bio-Inspired Comput., vol. 8, no. 1, pp. 33–41, Feb. 2016.
    [21] H. Wang et al., ‘‘Firefly algorithm with neighborhood attraction,’’ Inf. Sci., vols. 382–383, pp. 374–387, Mar. 2017.
    [22] H. Wang et al., ‘‘A hybrid multi-objective firefly algorithm for big data optimization,’’ Appl. Soft Comput., vol. 69, pp. 806–815, Aug. 2018.
    [23] C. Wang and X. Chu ‘‘An improved firefly algorithm with a specific probability and its engineering application,’’ IEEE Access, vol.7, pp.57424-57439, April 2019.
    [24] P. Lévy, “Théorise de L’ Addition Aléatorise,” Paris: Gauthier-Villars, 1937.
    [25] A. Ott, J.P. Bouchaud, D. Langevin, et al, “Anomalous diffusion in “living polymers”: a genuine Lévy flight,” Phys. Rev. Lett., vol. 65, No. 17, pp. 2201-2204, 1990.
    [26] H. Katori, S. Schlipf, and H. Walther, “Anomalous dynamics of a single ion in an optical lattice,” Phys. Rev. Lett., vol. 79, no. 12, pp. 2221-2224, 1997
    [27] G. Zumofen and J. Klafter, “Absorbing boundary in one-dimensional anomalous transport,” Phys. Rev. E, vol. 51, no. 4, pp. 2805-2814, 1995.
    [28] N. E. Humphries, N. Queiroz, J. R.M. Dyer, et al., “Environmental context explains Lévy and Brownian movement patterns of marine predators,” Nature, vol. 465, no. 7301, pp. 1066-1069, 2010.
    [29] X. -S. Yang and S. Deb, “Cukoo search via Lévy flights,” in Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on, 2009, pp.210-214: IEEE.
    [30] X. -S. Yang, Nature-inspired metaheuristic algorithm. Luniver press, 2010.
    [31] J. Huang and X. Chen, “A switch-mode firefly algorithm for global optimization,” IEEE Access, vol. 6 pp. 54177-54184, October 2018.
    [32] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Advances in Engineering Software, vol. 69, no. 13, pp. 46-61, Mar.2014.
    [33] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: a gravitational search algorithm,” Information Sciences, vol. 179, no. 13, pp. 2232-2248, Mar.2009.
    [34] G. Dhiman, and V. Kumar, “Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications,” Advances in Engineering Software, vol. 114, pp. 48-70, Dec.2017.
    [35] T. -H. S Li and M. -Y. Shieh, "Switching-type fuzzy sliding mode control of a cart-pole system," Mechatronics, vol. 10, no. 1-2, pp. 91-109, Feb. 2000.
    [36] S. -G. Kong and B. Kosko, “Comparison of fuzzy and neural truck backer upper control systems,” International Joint Conference on, pp. 349-358, Jun. 1990.
    [37] L. -X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from examples,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 22, no. 6, pp. 1414-1427, Nov./Dec. 1992.
    [38] C.-F. Juang and C. -M. Lu, “Ant colony optimization incorporated with fuzzy q-learning for reinforcement fuzzy control,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 39, no. 3, pp. 597-608, Feb. 2009.
    [39] L. Jouffe, “Fuzzy inference system learning by reinforcement methods,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 28, no. 3, pp. 338-355, Aug. 1998.
    [40] L. Jouffe, “Fuzzy Sarsa learning and the proof of existence of its stationary points,” Asian Journal of Control, vol. 10, no. 5, pp. 535-549, Sep. 1998.

    無法下載圖示 校內:2024-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE