| 研究生: |
范振宇 Fan, Chen-Yu |
|---|---|
| 論文名稱: |
分析蛋白質交互作用種類之整合平台 An integrated platform of analyzing protein interaction types |
| 指導教授: |
張天豪
Chang, Tien-Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 蛋白質 、交互作用 |
| 外文關鍵詞: | protein, interaction |
| 相關次數: | 點閱:65 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
各種不同的蛋白質交互作用在許多生物功能中扮演著關鍵的角色。這些交互作用有許多不同的種類,比如說物理上的接觸或是功能上的相關,使得蛋白質間的交互作用更為複雜。這些不同的交互作用種類在性質上非常不同,應該區分清楚。然而,大部分現存的分析工具都集中在單一種類的蛋白質交互作用,或是把多種交互作用種類混和當成同一種的蛋白質交互作用。本研究從五個不同的資料庫收集了7234058筆蛋白質交互作用,並且針對不同的交互作用種類建立預測模型。經由實驗分析不同交互作用種類的預測效能。本研究所提出的方法已經實作成一個能夠預測蛋白質交互作用以及其交互作用種類的網站,稱為PRASA。PRASA提供一個簡潔的整合平台,讓使用者能夠容易的瀏覽蛋白質與蛋白質之間的關係,進一步了解蛋白質在生命中所扮演的角色。
Various protein interactions are essential to many biological functions. The existence of diverse types, such as physically contacted or functionally related, makes protein interactions more complicated. These different interaction types are quite distinct and should not be confused with one another. However, most of existing tools either focused on a specific interaction type or mixed different ones. In this study, we collected 7234058 interactions with experimentally verified interaction types from five databases and compiled individual probabilistic models for different types of interactions. The experimental results show the performance of PRASA on different interaction types. The proposed method has been implemented as a web site, named PRASA, which predicts protein interactions as well as the interaction types. PRASA provides a centralized and organized platform for easily browsing, downloading and comparing the interaction types, which helps to reveal more insights of the complicated roles that the proteins play in organisms.
1. De Las Rivas J, Fontanillo C: Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS computational biology 2010, 6(6):e1000807.
2. Young KH: Yeast two-hybrid: so many interactions, (in) so little time. Biology of reproduction 1998, 58(2):302-311.
3. Dandekar T, Snel B, Huynen M, Bork P: Conservation of gene order: a fingerprint of proteins that physically interact. Trends in biochemical sciences 1998, 23(9):324-328.
4. Huynen M, Snel B, Lathe W, 3rd, Bork P: Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome research 2000, 10(8):1204-1210.
5. Teichmann SA, Babu MM: Conservation of gene co-regulation in prokaryotes and eukaryotes. Trends in biotechnology 2002, 20(10):407-410; discussion 410.
6. Goh CS, Bogan AA, Joachimiak M, Walther D, Cohen FE: Co-evolution of proteins with their interaction partners. Journal of molecular biology 2000, 299(2):283-293.
7. Pazos F, Valencia A: Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein engineering 2001, 14(9):609-614.
8. Fariselli P, Pazos F, Valencia A, Casadio R: Prediction of protein--protein interaction sites in heterocomplexes with neural networks. European journal of biochemistry / FEBS 2002, 269(5):1356-1361.
9. Qi Y, Klein-Seetharaman J, Bar-Joseph Z: Random forest similarity for protein-protein interaction prediction from multiple sources. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing 2005:531-542.
10. Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y, Jiang H: Predicting protein-protein interactions based only on sequences information. Proceedings of the National Academy of Sciences of the United States of America 2007, 104(11):4337-4341.
11. Yu CY, Chou LC, Chang DT: Predicting protein-protein interactions in unbalanced data using the primary structure of proteins. BMC bioinformatics 2010, 11:167.
12. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID: a general repository for interaction datasets. Nucleic acids research 2006, 34(Database issue):D535-539.
13. Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research 2000, 28(1):27-30.
14. Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, Eisenberg D: DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic acids research 2002, 30(1):303-305.
15. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A et al: IntAct: an open source molecular interaction database. Nucleic acids research 2004, 32(Database issue):D452-455.
16. Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich M, Cesareni G: MINT: a Molecular INTeraction database. FEBS letters 2002, 513(1):135-140.
17. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P: STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic acids research 2005, 33(Database issue):D433-437.
18. Prieto C, De Las Rivas J: APID: Agile Protein Interaction DataAnalyzer. Nucleic acids research 2006, 34(Web Server issue):W298-302.
19. McDowall MD, Scott MS, Barton GJ: PIPs: human protein-protein interaction prediction database. Nucleic acids research 2009, 37(Database issue):D651-656.
20. Kerrien S, Orchard S, Montecchi-Palazzi L, Aranda B, Quinn AF, Vinod N, Bader GD, Xenarios I, Wojcik J, Sherman D et al: Broadening the horizon--level 2.5 of the HUPO-PSI format for molecular interactions. BMC biology 2007, 5:44.
21. Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M et al: The Universal Protein Resource (UniProt). Nucleic acids research 2005, 33(Database issue):D154-159.
22. Pruitt KD, Tatusova T, Klimke W, Maglott DR: NCBI Reference Sequences: current status, policy and new initiatives. Nucleic acids research 2009, 37(Database issue):D32-36.
23. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S et al: Database resources of the National Center for Biotechnology Information. Nucleic acids research 2006, 34(Database issue):D173-180.
24. Wheeler DL, Church DM, Edgar R, Federhen S, Helmberg W, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E et al: Database resources of the National Center for Biotechnology Information: update. Nucleic acids research 2004, 32(Database issue):D35-40.
25. Yen-Jen O, Yu-Yen O, Shien-Ching H, Chien-Yu C, Tien-Hau Chang D: Data classification with a relaxed model of variable kernel density estimation. In: Neural Networks, 2005 IJCNN '05 Proceedings 2005 IEEE International Joint Conference on: 31 July-4 Aug. 2005 2005; 2005: 2831-2836 vol. 2835.
26. Artavanis-Tsakonas S: Notch Signaling: Cell Fate Control and Signal Integration in Development. Science 1999, 284(5415):770-776.
27. Bugreev DV, Rossi MJ, Mazin AV: Cooperation of RAD51 and RAD54 in regression of a model replication fork. Nucleic acids research 2011, 39(6):2153-2164.
校內:2017-07-11公開