簡易檢索 / 詳目顯示

研究生: 李敏誠
Li, Ming-Cheng
論文名稱: 具雙頻天線陣列之2.4 GHz 無線獵能諧波偵測標籤設計
Design of 2.4 GHz Wireless Energy Harvesting Harmonic Detection Tag with Dual-Band Antenna Array
指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 98
中文關鍵詞: 無線獵能接收器諧波偵測標籤天線陣列微帶天線
外文關鍵詞: Wireless Power Transfer, RF Energy Harvesting, Second Harmonic Detection Tag, Antenna Array, Patch Antenna, Rectifying Circuit
相關次數: 點閱:157下載:45
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般來說,整流偵測天線標籤需要一組天線以及一組整流電路來構成,利用蕭特基二極體的整流效應將天線所接收到的訊號經過半波整流後可得到直流分量以及二倍頻諧波分量,利用二倍頻天線可將整流後得到的二倍頻訊號回傳至發射端天線,藉此達到偵測標籤所在位置的功能。另外直流的部分則可用來為所需的設備供電,可以額外對整流器進行設計以提供穩定的直流電壓,藉此可達成不需要電源即可運作的獵能標籤設計,本論文重點著重在天線陣列的開發與整合,直流輸出的部分將以概念與理論形式說明。
    本論文為設計一可用來偵測2.4 GHz 訊號並且將接收到的訊號利用二極體電路轉換成二倍頻的 4.8 GHz 訊號以及直流分量的獵能標籤陣列。利用微帶天線的電流分布特性可以使用槽孔來分割出2.4 GHz 天線以及 4.8 GHz 天線,以達到最佳面積使用效率。主要研究部分著重在天線架構的提出以及天線陣列的開發。從單一天線模型的開發,擴展到1×2 天線陣列,再到2×2 天線陣列,詳細探討本論文之天線陣列的設計流程、量測實驗以及問題與討論。最後再將2×2 天線陣列與整流電路做整合,合併在一組印刷電路板上,完成本論文所提出的諧波標籤陣列系統。

    In this thesis, a design of 2.4 GHz second harmonic detection tag for wireless energy harvesting was proposed. The overall research focuses on the development of merged 2.4 GHz and 4.8 GHz antenna arrays, used for receiving RF energy and
    transmitting harmonic signal for the harmonic detection tag.
    This thesis will be divided into two main parts. In the first part, we provid the
    design of the antenna array and discussed the design and simulation results of single antenna, 1×2 antenna arrays, and 2×2 antenna arrays based on 1.6mm FR4 printed circuit board, followed by practical implementation and measurements. We
    explored various issues encountered during the development process and validated the antenna array model through final measurements.
    In the second part, we focused on the design and simulation of the rectifying circuit with the harmonic detection tag. We integrated the rectifying circuit with the proposed 2×2 antenna array and performed implementation, experiments, and measurements to complete the designed framework of the harmonic detection tag array presented in this thesis.

    摘要 I 目錄 XI 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 本論文研究背景與動機 1 1.2 整合式無線獵能系統架構與介紹 2 1.2.1 無線獵能收發機介紹 3 1.2.2 本論文之系統收發機介紹 3 1.3 文獻回顧 4 1.4 論文概述 7 第二章 系統天線介紹與設計 8 2.1 天線與被動元件基本介紹 8 2.1.1 天線的增益、方向性以及輻射效率 8 2.1.2 天線的品質因素與輻射電阻 11 2.1.3 天線陣列基本介紹 12 2.1.4 功率分配器基本介紹 14 2.2 微帶天線理論與設計 15 2.2.1 微帶天線理論與介紹 15 2.2.2 微帶天線架構與介紹 20 2.3 單一天線架構模擬與量測 22 2.3.1 初始天線架構模擬 22 2.3.2 2.4 GHz 與4.8 GHz天線模擬結果 24 2.3.3 2.4 GHz 與4.8 GHz 天線量測結果 28 第三章 天線陣列架構模擬與量測 35 3.1 1×2 天線陣列模擬與量測 35 3.1.1 1×2 天線陣列模型一 36 3.1.2 1×2 天線陣列模型二 40 3.1.3 1×2 天線陣列模型三 43 3.1.4 1×2 天線陣列模型四 46 3.1.5 各天線陣列比較與量測 49 3.2 2×2 天線陣列模擬與量測 59 3.2.1 2×2 天線陣列模型一 60 3.2.2 2×2 天線陣列模型二 63 3.2.3 2×2 天線陣列模型三 65 3.2.4 各天線陣列比較與量測 67 第四章 整流天線設計與實驗 78 4.1 整流天線設計 78 4.1.1 整流電路介紹 78 4.1.2 整流電路設計 81 4.2 諧波偵測標籤陣列實驗與量測 86 4.2.1 實驗過程 86 4.2.2 量測結果 88 第五章 總結與未來展望 90 5.1 總結 90 5.2 未來展望 91 參考文獻 94

    [1] N. Hongyim and S. Mitatha, "Building Automatic Antenna Tracking system for Low Earth Orbit(LEO) satellite communications," 2015 International Computer Science and Engineering Conference (ICSEC), Chiang Mai, Thailand, 2015, pp. 1-6, doi: 10.1109/ICSEC.2015.7401448.
    [2] F. Ferrero and L. -H. Trinh, "Multi-band antenna system for IoT from Space applications," 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 2022, pp. 1-3, doi: 10.23919/EuCAP53622.2022.9769350.
    [3] Sheng-Fan Yang, Tzuen-Hsi Huang, Chun-Cheng Chen, Chun-Yi Lu and Pei-Jung Chung, "Beamforming power emitter design with 2×2 antenna array and phase control for microwave/RF-based energy harvesting," 2015 IEEE Wireless Power Transfer Conference (WPTC), Boulder, CO, 2015, pp. 1-4, doi: 10.1109/WPT.2015.7140129.
    [4] Gregory L. Charvat, Small and Short-Range Radar Systems. CRC, 2014
    [5] T. Watson, S. Miller, D. Kershner and G. A. Anzic, "Design of a K-band transmit phased array for low Earth orbit satellite communications," Proceedings 2000 IEEE International Conference on Phased Array Systems and Technology (Cat. No.00TH8510), Dana Point, CA, 2000, pp. 211-214, doi: 10.1109/PAST.2000.858942.
    [6] I. M. Elbelazi and M. C. Wicks, "Frequency Diverse Array Antenna for Tracking Low Earth Orbit Satellite," NAECON 2018 - IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, 2018, pp. 516-520, doi: 10.1109/NAECON.2018.8556659.
    [7] 邱煥凱、林貴城, ADS應用於射頻功率放大器設計與模擬. 國立清華大學出版社, 2014
    [8] S. Kim et al., "Ambient RF Energy-Harvesting Technologies for Self-Sustainable Standalone Wireless Sensor Platforms," in Proceedings of the IEEE, vol. 102, no. 11, pp. 1649-1666, Nov. 2014, doi: 10.1109/JPROC.2014.2357031.
    [9] D. K. Cheng, Field and Wave Electromagnetics 2nd ed. Addison-Wesley, 1989
    [10] F. Yang, Xue-Xia Zhang, Xiaoning Ye and Y. Rahmat-Samii, "Wide-band E-shaped patch antennas for wireless communications," in IEEE Transactions on Antennas and Propagation, vol. 49, no. 7, pp. 1094-1100, July 2001, doi: 10.1109/8.933489.
    [11] Kin-Fai Tong, Kwai-Man Luk, Kai-Fong Lee and R. Q. Lee, "A broad-band U-slot rectangular patch antenna on a microwave substrate," in IEEE Transactions on Antennas and Propagation, vol. 48, no. 6, pp. 954-960, June 2000, doi: 10.1109/8.865229.
    [12] Gernot Hueber, Millimeter-Wave Circuits for 5G and Radar. Cambridge University Press, 2019
    [13] 陳俊承, “應用於諧波雷達之物件偵測電路”, 碩士, 電機工程學系碩士班, 國立成功大學, 台南市, 2016
    [14] 陳勇廷, “具有可偵測倍頻訊號的2.4 GHz 獵能標籤設計”, 碩士, 電機工程學系碩士班, 國立成功大學, 台南市, 2020
    [15] AVAGO Series, HSMS-286x Series Surface Mount Microwave Schottky Detector Diodes Data Sheet, AVAGO Series, 2009
    [16] 徐興福, HFSS射頻仿真設計實例大全. 電子工業出版社, 2015
    [17] 鍾順時, 天線理論與技術 (第二版). 中國工信出版集團, 電子工業出版社, 2015
    [18] 邱政男、鄧聖明、蔡慶龍、柏小松, 天線設計與應用 -- 使用 ANSYS HFSS 模擬器, 3/e. 鼎茂, 2017
    [19] 陳華明, 天線設計: HFSS模擬應用. 全華圖書股份有限公司, 2010
    [20] T. Ungan, X. Le Polozec, W. Walker and L. Reindl, "RF energy harvesting design using high Q resonators," 2009 IEEE MTT-S International Microwave Workshop on Wireless Sensing, Local Positioning, and RFID, Cavtat, 2009, pp. 1-4, doi: 10.1109/IMWS2.2009.5307869.
    [21] C. S. Ong, M. F. Karim, L. C. Ong, T. M. Chiam and A. Alphones, "A compact 2×2 circularly polarized antenna array for energy harvesting," 2010 Asia-Pacific Microwave Conference, Yokohama, Japan, 2010, pp. 1977-1980.
    [22] I. Chaour, A. Fakhfakh and O. Kanoun, "Patch Antenna Array for RF Energy Harvesting Systems in 2.4 GHz WLAN Frequency Band," 2018 15th International Multi-Conference on Systems, Signals & Devices (SSD), Yasmine Hammamet, Tunisia, 2018, pp. 179-183, doi: 10.1109/SSD.2018.8570386.
    [23] J. Sang, L. Qian, M. Li, J. Wang and Z. Zhu, "A Wideband and High-Gain Circularly Polarized Antenna Array for Radio-Frequency Energy Harvesting Applications," in IEEE Transactions on Antennas and Propagation, vol. 71, no. 6, pp. 4874-4887, June 2023, doi: 10.1109/TAP.2023.3271526.
    [24] P. Jaffe and J. McSpadden, ‘‘Energy conversion and transmission modules for space solar power,’’ Proc. IEEE, vol. 101, no. 6, pp. 1424–1437, Jun. 2013.
    [25] A. Collado and A. Georgiadis, ‘‘Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 8, pp. 2225–2234, Aug. 2013.
    [26] M. Danesh and J. R. Long, ‘‘Photovoltaic antennas for autonomous wireless systems,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 12, pp. 807–811, Nov. 2011.
    [27] H. S. Kim, J. -H. Kim, and J. Kim, ‘‘A review of piezoelectric energy harvesting based on vibration,’’ Int. J. Precision Eng. Manuf., vol. 12, no. 6, pp. 1129–1141, Dec. 2011.
    [28] S. Roundy, P. K. Wright, and J. Rabaey, ‘‘A study of low level vibrations as a power source for wireless sensor nodes,’’ Comput. Commun., vol. 26, no. 11, pp. 1131–1144, Jul. 2003.
    [29] F. Yildiz, ‘‘Potential ambient energy-harvesting sources and techniques,’’ J. Technol. Studies, vol. 35, no. 1, pp. 40–48R Fall, 2009.
    [30] M. Pinuela, P. D. Mitcheson, and S. Lucyszyn, ‘‘Ambient RF energy harvesting in urban and semi-urban environment,’’ IEEE Trans. Microw. Theory Tech., vol. 61, no. 7, pp. 2715–2726, Jul. 2013.
    [31] N. A. Eltresy, D. N. Elsheakh, E. A. Abdallah and H. M. Elhennawy, "Multi-Bands Dual Linearly Polarized $2 imes 2$ Antenna Array for Powering Sensors in IoT System," 2018 IEEE Global Conference on Internet of Things (GCIoT), Alexandria, Egypt, 2018, pp. 1-5, doi: 10.1109/GCIoT.2018.8620156.
    [32] M. M. Rahman and H. -G. Ryu, "2x2 Array Design of ESPAR Antenna for IoT Communication System," 2022 27th Asia Pacific Conference on Communications (APCC), Jeju Island, Korea, Republic of, 2022, pp. 380-383, doi: 10.1109/APCC55198.2022.9943711.
    [33] U. M. Iqbal, L. Albasha and H. Mir, "A Transmitter Antenna Array System for Wireless Power Transfer at 5.8GHz," 2022 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 2022, pp. 1-5, doi: 10.1109/ASET53988.2022.9734889.
    [34] T. Varum, A. Ramos, J. Caiado and J. N. Matos, "Wideband Series-Fed Microstrip Antenna Array for 5G/IoT Systems," 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 2020, pp. 1-4, doi: 10.1109/CSNDSP49049.2020.9249576.
    [35] M. Patriotis, F. N. Ayoub and C. G. Christodoulou, "Four-Element Beam Switching Antenna for Compact IoT Devices," 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 2020, pp. 1-4, doi: 10.23919/EuCAP48036.2020.9135616.
    [36] Taimoor Khan, Nasimuddin, Yahia M.M. Antar, Elements of Radio Frequency Energy Harvesting and Wireless Power Transfer Systems. CRC Press, 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE