簡易檢索 / 詳目顯示

研究生: 賴祈叡
Lai, Chi-Jui
論文名稱: 適用可合成時間數位轉換器之二維隨機相位插值法
Two Dimensional Stochastic Phase Interpolation for Synthesizable Time-to-Digital Converters
指導教授: 邱瀝毅
Chiou, Lih-Yih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 62
中文關鍵詞: 隨機相位插值二維抗製程電壓溫度變異可合成電路
外文關鍵詞: stochastic phase interpolation, two dimension, PVT resilient, Synthesis
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技演進,智慧水表產品問世,水流速的量測,可以利用時間至數位轉換器的技術,監測是否有漏水的現象,近幾年使用的時間轉數位轉換的電路,大多都是以游標尺延遲線(Vernier Delay Line),或是搭配其他校準方式提升解析度,但犧牲量測範圍或是增加功率消耗,另外也有客製化(Full-Custom)的方式,以電晶體層級(transistor level)設計邏輯閘能有更好的效能,但需要花更長的時間設計。
    本論文提出可合成時間數位轉換器架構,藉由二維延遲串(delay chain)產生隨機相位插值,可以讓相位平均分布 (Uniform Distribution),減少非線性的問題。此架構在40nm CMOS的製程,在不需額外校準電路的情況下,可以維持在1.96ps的解析度,且在相同製程下,比一維隨機相位插值方法減少17%功耗下,DNL也改善4.7%。

    As the rapid development of technology, ultrasonic flow meters can measure water flow by Time-to-Digital Converters (TDC) and detect whether there is leak in the pipe. In recent years, most of TDC designs are based on Vernier delay line(VDL) or integrate with different calibration methods to improve the resolution, but decrease dynamic range or increase power consumption. In addition, the use of the full-custom design flow can redesign logic gate in transistor level to solve these problems, but consume more time.
    We proposed a synthesizable TDC architecture using a two dimensional delay chain to generate stochastic phase interpolation. The stochastic phase can be uniform distribution to improve the non-linearity problem. The proposed algorithm can achieve resolution of 1.96ps using 40nm process and reduces power consumption by 17% when compared to one dimensional stochastic phase interpolation with 4.7% DNL improvement.

    摘 要 i 致 謝 vi 目錄 vii 表目錄 x 圖目錄 xi 第1章 緒論 1 1.1 研究概觀 1 1.1.1 時間數位轉換器 1 1.1.2 性能指標考量 2 1.1.3 超聲波水表設計原理 4 1.2 研究動機 5 1.3 研究貢獻 6 1.4 論文架構 6 第2章 相關研究背景 7 2.1 第一代基礎架構概觀 7 2.1.1時間轉換電壓(Time-to-Voltage)之時間至數位轉換器 7 2.1.2 雙斜率(Dual Slope)之時間至數位轉換器 8 2.2第二代基礎架構概觀 10 2.2.1計數器為基礎之時間至數位轉換器(Counter Based TDC) 10 2.2.2 延遲串為基礎之時間至數位轉換器(Delay Chain Based TDC) 11 2.2.3混合式時間至數位轉換器(Hybrid Based TDC) 12 2.3 第三代基礎架構概觀 12 2.3.1游標尺之時間至數位轉換器(Vernier Based TDC) 12 第3章 相關文獻探討 14 3.1游標尺延遲串之擴展架構 14 3.1.1環形震盪器游標尺(Ring Oscillator Vernier) 14 3.1.2 二維閘控環形震盪器游標尺(Two-Dimensional Gated Ring Oscillator Vernier) 15 3.2 游標尺延遲串之校準機制 18 3.2.1直接校準(Direct Calibration) 18 3.2.2統計線性校準(Statistical Linearity Calibration) 19 3.3 抗製程變異之時間至數位轉換器 20 3.3.1時間數位轉換器之隨機相位插值(Stochastic Phase Interpolation TDC) 20 3.3.2相關文獻總結 24 第4章 適用可合成時間數位轉換器之二維隨機相位插值法 26 4.1問題描述 26 4.1.1 能量消耗 26 4.1.2冗餘電路(Redundant Circuit) 27 4.1.3環境參數影響相位分布 28 4.2 二維隨機相位插值法 29 4.2.1 整體二維架構概觀 30 4.2.2 相位分布分析 32 4.3考量相位機率分布之級數調整 33 第5章 實驗結果與分析 37 5.1實驗驗證平台與實驗環境設置 37 5.1.1數學模型模擬驗證 37 5.1.2混合訊號設計之實現與驗證 38 5.2 實驗一 39 5.3實驗二 47 5.4實驗三 51 5.5實驗四 54 第6章 結論與未來工作 55 6.1結論 55 6.2未來工作 56 參考文獻 57 個人簡歷 62

    [1]M.H. Sheu, J.F. Lin, Y.T. Hwang, and C.S. Wong, “Single-ended structure sense-amplifier-based flip-flop for low-power systems,” Electronics Letters, vol. 51, no. 1, pp. 20–21, 2015.
    [2]J.P. Jansson, A. Mäntyniemi, and J. Kostamovaara, “Synchronization in a multilevel CMOS time-to-digital converter,” IEEE Transaction on Circuits and Systems I :Regular Papers, vol. 56, no. 8, pp. 1622–1634, 2009.
    [3]B. Markovic, S. Tisa, F.A. Villa, A. Tosi, and F. appa, “A high-linearity, 17 ps precision time-to-digital converter based on a single-stage vernier delay loop fine interpolation,” IEEE Transaction on Circuits and Systems I :Regular Papers, vol. 60, no. 3, pp. 557–569, 2013.
    [4]J.G. aneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,” IEEE Journal of Solid-State Circuits, vol. 31, no. 11, pp. 1723–1732, 1996.
    [5]J. Jansson, A. Mäntyniemi, and J. Kostamovaara, “A delay line based CMOS time digitizer IC with 13 ps single-shot precision,” in Proc. IEEE International Symposium on Circuits and Systems, May. 2005, pp .4269-4272.
    [6]T.E. Rahkonen and J.T. Kostamovaara, “The Use of Stabilized CMOS Delay Lines for the Digitization of Short Time Intervals,” IEEE Journal of Solid-State Circuits, vol. 28, no. 8, pp. 887–894, 1993.
    [7]R. B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P.T. Balsara, “1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 3, pp. 220–224, 2006.
    [8]T. Rahkonen,J. Kostamovaara,and S. Saynajakangas,“Time interval measurements using integrated tapped CMOS delay lines,”in Proc. 32nd Midwest Symposium on Circuits and Systems., vol. 1, no. 2, pp. 201–205, 1989.
    [9]Y. Arai, T. Matsumura, and K.I. Endo, “A CMOS Four-Channel × 1K Time Memory LSI with 1-ns/b Resolution,” IEEE Journal of Solid-State Circuits, vol. 27, no. 3, pp. 359–364, 1992.
    [10]R.G. Baron, “The Vernier Time-Measuring Technique,” in Proc. Institute of Radio Engineers, vol. 45, no. 1, pp. 21–30, 1957.
    [11]C.T. Gray, T.A. Hughes, R. K.Cavin, W. Liu, and W.A. VanNoije, “A Sampling Technique and Its CMOS Implementation with 1 Gb/s Bandwidth and 25 ps Resolution,” IEEE Journal of Solid-State Circuits, vol. 29, no. 3, pp. 340–349, 1994.
    [12]C. Ljuslin, J. Christiansen, A. Marchioro, and O. Klingsheim, “An Integrated 16-channel CMOS Time to Digital Converter,” IEEE Transation on Nuclear Science, vol. 41, no. 4, pp. 1104–1108, 1994.
    [13]P. Dudek, S. Szczepański, and J.V. Hatfield, “A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line,” IEEE Journal of Solid-State Circuits, vol. 35, no. 2, pp. 240–247, 2000.
    [14]K.C. Choi, S.W. Lee, B.C. Lee, and W.Y. Choi, “A time-to-digital converter based on a multiphase reference clock and a binary counter with a novel sampling error corrector,” IEEE Transaction on Circuits and Systems II: Express Briefs, vol. 59, no. 3, pp. 143–147, 2012.
    [15]I. Nissinen, A. Mantyniemi, and J. Kostamovaara, “A CMOS time-to-digital converter based on a ring oscillator for a laser radar,” in Proc. IEEE European Solid-State Circuits Conference, Sep. 2003, pp. 469-472.
    [16]L. Vercesi, A. Liscidini, and R. Castello, “Two-dimensions vernier time-to-digital converter,” IEEE Journal of Solid-State Circuits, vol. 45, no. 8, pp. 1504–1512, 2010.
    [17]P. Lu, P. Andreani, and A. Liscidini, “A 2-D GRO vernier time-to-digital converter with large input range and small latency,” in Proc. IEEE Radio Frequency Integrated Circuits, Jun. 2013, pp. 151–154.
    [18]P. Lu, P. Andreani, and A. Liscidini, “A 90nm CMOS gated-ring-oscillator-based 2-dimension Vernier time-to-digital converter,” in Proc. Norchip ,2012.
    [19]M.Z. Straayer and M.H. Perrott, “A multi-path gated ring oscillator TDC with first-order noise shaping,” IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1089–1098, 2009.
    [20]P. Lu, A. Liscidini, and P. Andreani, “A 3.6 mW, 90 nm CMOS gated-vernier time-to-digital converter with an equivalent resolution of 3.2 ps,” IEEE Journal of Solid-State Circuits, vol. 47, no. 7, pp. 1626–1635, 2012.
    [21]C. Jiang, Y. Huang, and Z. Hong, “A multi-path gated ring oscillator based time-to-digital converter in 65 nm CMOS technology,” Journal of Semiconductors., vol. 34, no. 3, p. 35004, 2013.
    [22]J. Yu, F.F. Dai, and R.C. Jaeger, “A 12-Bit Vernier Ring Time-to-Digital Converter in 0.13 CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 830–842, 2010.
    [23]Z. Cheng, M.J. Deen, and H. Peng, “A Low-Power Gateable Vernier Ring Oscillator Time-to-Digital Converter for Biomedical Imaging Applications,” IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 2, pp. 445–454, 2016.
    [24]P. Levine and G. Roberts, “A High-Resolution Flash Time-to-Digital Converter and Calibration Scheme,” in Proc. IEEE International Test Conference , 2004, pp. 1148–1157.
    [25]J. Rivoir, “Fully-digital time-to-digital converter for ATE with autonomous calibration,” in Proc. IEEE International Test Conference., 2006, pp. 1-10.
    [26]S. Weaver, B. Hershberg, P. Kurahashi, D. Knierim, and U.K. Moon, “Stochastic flash analog-to-digital conversion,” IEEE Transaction on Circuits and Systems I Reguar. Papers, vol. 57, no. 11, pp. 2825–2833, 2010.
    [27]A. Fahmy, J. Liu, T. Kim, and N. Maghari, “An All-Digital Scalable and Reconfigurable Wide-Input Range Stochastic ADC Using Only Standard Cells,” IEEE Transaction on Circuits and Systems II: Express Briefs, vol. 62, no. 8, pp. 731–735, 2015.
    [28]S. Weaver, B. Hershberg, and U.K. Moon, “PDF folding for stochastic flash ADCs,”in Proc. IEEE International Conference on Electronics, Circuits and Systems., Dec. 2010, pp. 770–773.
    [29]S. Stephan Henzler, Time-to-Digital Converter. Germany: Springer, 2010.
    [30]F. YUAN, CMOS Time-Mode Circuit and System: Fundamentals and Applications. CRC Press, 2015.
    [31]Z. Cheng, X. Zheng, M.J. Deen, and H. Peng, “Recent developments and design challenges of high-performance ring oscillator CMOS time-to-digital converters,” IEEE Transactions on Electron Devices, vol. 63, no. 1, pp. 235–251, 2016.
    [32]K. Katoh, Y. Doi, S. Ito, H. Kobayashi, E.Li, N.Takai, and O.Kobayashi, “An Analysis of Stochastic Self-Calibration of TDC Using Two Ring Oscillators,”in Proc. IEEE Asian Test Symposium ., Nov. 2013, pp. 140–146.
    [33]S. J. Kim, W. Kim, M. Song, J. Kim, T. Kim, and H. Park, “A 0.6V 1.17ps PVT-tolerant and synthesizable time-to-digital converter using stochastic phase interpolation with 16x spatial redundancy in 14nm FinFET technology,”in Proc. IEEE International Solid-State Circuits Conference, Feb. 2015, pp. 280–281.
    [34]V.T. Converter, R. Rashidzadeh, M. Ahmadi, W.C. Miller, and L. Member, “An All-Digital Self-Calibration Method for a Vernier-Based Time-to-Digital Converters,” IEEE Transaction on Instrument and Measurement ,vol. 59, no. 2, pp. 463–469, Feb. 2010.
    [35]J. Rivoir, “Statistical linearity calibration of time-to-digital converters using a free-running ring oscillator,” in Proc. Asian Test Symposium., Nov. 2006, pp. 45–50.

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE