| 研究生: |
葉金村 Ye, Jin-Cun |
|---|---|
| 論文名稱: |
具1687標準之三維積體電路自動化測試 Autonomous Testing for 3D-ICs with IEEE Std. 1687 |
| 指導教授: |
李昆忠
Lee, Kuen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 32 |
| 中文關鍵詞: | 1687標準 、IJTAG 、可重規劃之掃描電路 、自動化測試 、三維積體電路 、可測試設計 |
| 外文關鍵詞: | IEEE Std. 1687, IJTAG, reconfigurable scan network, autonomous testing, 3D-ICs, DFT |
| 相關次數: | 點閱:103 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1687標準又稱IJTAG,定義了基於序列掃描且具彈性的架構,可以有效率地存取晶片內部的電路。本篇論文提出一創新的架構,結合1687標準以及ㄧ有效率的測試控制器來執行三維積體電路的自動化測試。此測試控制器能傳送平行的測試資料至1687標準之架構以及待測試電路,並提供所需的控制訊號以控制整個測試流程。這個設計能達到全速度、自動化及可程式化的三維積體電路測試。在實驗結果中,在考量這個設計之自動化測試的能力的情況下,這個設計的額外面積負擔及測試時間負擔是很小的。
IEEE Std. 1687, or IJTAG, defines flexible serial scan-based architectures for accessing embedded instruments efficiently. In this thesis, we present a novel test architecture that employs IEEE Std. 1687 together with an efficient test controller to carry out 3D-IC testing autonomously. The test controller deliver parallel test data for the IEEE Std. 1687 structures and the cores under test, and provide required control signals to control the whole test procedure. This design can achieve at-speed, autonomous and programmable testing in 3D-ICs. Experimental results show that the additional area and test cycle overhead of this architecture is small considering its autonomous test capability.
[1]E.J. Marinissen, “Challenges in testing TSV-based 3D stacked ICs: Test flows, test contents, and test access,” in Proc. 2010 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2010.
[2]IEEE Standard for Access and Control of Instrumentation Embedded within a Semiconductor Device," IEEE Std. 1687-2014, 2014.
[3]Y. Fkih, P. Vivet, M. L. Flottes, B. Rouzeyre, G. D. Natale and J. Schloeffel, “3D DFT Challenges and Solutions,” in Proc. 2015 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2015.
[4]Y. Fkih, P. Vivet, B. Rouzeyre, M. l. Flottes and G. Di Natale, “A JTAG based 3D DFT architecture using automatic die detection,” IEEE PRIME, 2013.
[5]E.J. Marinissen, C.-C Chi, M. Konijnenburg, J. Verbree, “A DfT Architecture for 3D-SICs Based on a Standardizable Die Wrapper,” Journal of Electronic Testing: Theory and Applications (JETTA), 2012.
[6]R. Baranowski, M.A. Kochte, H.-J. Wunderlich, Modeling, verification and pattern generation for
reconfigurable scan networks,” in Proc. IEEE Int’l Test Conference (ITC), 2012.
[7]K.-J. Lee, T.-Y. Hsieh, C.-Y. Chang, Y.-T. Hong and W.-C. Huang, “On-Chip SOC Test Platform Design Based on IEEE 1500 Standard,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 2010.
[8]M. Keim, T. Waayers, R. Morren, F. Hapke and R. Krenz-Baath, “Industrial Application of IEEE P1687 for an Automotive Product,” in Proc. Euromicro Conf. on Digital System Design (DSD), 2013.
[9]T. Payakapan, S. Kan, K. Pham, K. Yang, J.-F. Cote, M. Keim, J. Dworak, “A case study: Leverage IEEE 1687 based method to automate modeling, verification, and test access for embedded instruments in a server processor,” in Proc. IEEE Int’l Test Conference (ITC), 2015.
[10]Y. Li, S. Makar, S. Mitra: “CASP: Concurrent Autonomous Chip Self-Test Using Stored Test Patterns.” in Proc. Design Automation and Test in Europe Conf. (DATE), 2008.
[11]K.-J. Lee, C.-Y. Chu, Y.-T. Hong, “An embedded processor based SOC test platform,” in Proc. ISCAS, 2005.
[12]H. Lee, K. Chakrabarty, “Test Challenges for 3D Integrated Circuits,” IEEE Design & Test of Computers, 2009.
[13]E.J. Marinissen, T. McLaurin, H. Jiao, “IEEE Std P1838: - DFT Standard-under-Development for 2.5D-,3D-, and 5.5D-SICs,” in Proc. European Test Symposium, 2016.
[14]F. G. Zadegan, U. Ingelsson, G. Asani, G. Carlsson and E. Larsson, “Test Scheduling in an IEEE P1687 Environment with Resource and Power Constraints,” in Proc. Asian Test Symposium, 2011.
校內:2021-10-26公開