| 研究生: |
曾世穎 Zeng, Shi-Ying |
|---|---|
| 論文名稱: |
採用統一功率潮流控制器於抑制混合蒸汽渦輪發電機與離岸風場之次同步共振 Suppression of Subsynchronous Resonance in Hybrid Steam-Turbine Generator and Offshore Wind Farm Using a Unified Power Flow Controller |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 210 |
| 中文關鍵詞: | 次同步共振 、離岸式風場 、統一功率潮流控制器 |
| 外文關鍵詞: | Offshore wind farm, unified power flow controller, subsynchronous resonance |
| 相關次數: | 點閱:117 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係研究採用統一功率潮流控制器來抑制混合蒸汽渦輪機以及風力渦輪機發電系統之次同步共振現象。本論文中第一個研究架構為原始美國電機電子工程師學會提出之第二標準模型、第一系統之同步發電機系統以及將雙饋式感應發電機為基底之風場取代系統中同步發電機之架構;第二研究系統架構為整合原始第二標準模型、第一系統模型與離岸式風場,經串聯電容補償輸電線連接至無限流排,探討當離岸式風場與同步發電機系統併入後,對原始系統之次同步共振現象。本論文於三相平衡下,利用交-直軸等效電路建立模型,其中包含:同步發電機、雙饋式感應發電機為基底之離岸式風場以及統一功率潮流控制器等系統模型,並利用極點安置法設計統一功率潮流控制器之比例-積分-微分阻尼控制器。在系統小訊號穩定度方面,針對傳輸線路補償比、同步發電機輸出實功率、同步發電機輸出端電壓、功率因數及風場風速變動等工作點變化之頻域特徵值分析;在系統動態與暫態模擬分析部分,完成轉矩干擾、風速變動、風速干擾及三項短路故障等模擬結果。由系統小訊號穩定度、動態及暫態模擬結果可以得知,當加入統一功率潮流控制器結合比例-積分-微分阻尼控制器後,能使系統回復至穩定,並有效抑制系統次同步共振現象
This thesis presents the suppression results of subsynchronous resonance (SSR) in power systems with a steam-turbine system and a wind-turbine generation system using a unified power flow controller (UPFC). The first studied system uses the Second Benchmark Model, system-1 of Institute of Electrical and Electronic Engineers (IEEE), USA while a doubly-fed induction generator (DFIG)-based wind farm is used to replace the synchronous generator (SG) in the IEEE second Benchmark Model, system-1. The second studied system is based on the IEEE Second Benchmark Model, system-1 joining with a DFIG-based offshore wind farm (OWF). The d-q axis equivalent-circuit model under three-phase balanced loading conditions is used to establish the studied systems including the mass-spring-damper system, the SG, the DFIG-based offshore wind farm, the UPFC, and other system models. A proportional-integral-derivative (PID) damping controller of the UPFC is designed by using pole-assignment approach based on modal control theory. Small signal stability characteristics of the studied system under different series compensation ratios, output active power, the terminal voltage, power factor of the SG, and wind speed of the OWF are performed. Nonlinear model time-domain simulations under torque disturbance of the SG, wind speed variation, wind speed disturbance, and three short-circuit faults are also carried out. The simulation results show that the proposed UPFC joined with the designed damping controller are effective to suppress the SSR of the studied power systems.
[1] 吳振中,期待大「風」收—我國風力發電發展,能源報導月刊,第8-10頁,2006年6月。
[2] 余政達,台灣風能發展的永續性評估與政策建議,能源報導月刊,第90-109頁,2003年。
[3] 台灣電力公司,台電示範風場計畫。[Online]. Available: https://www.taipower.com.tw/tc/news_info.aspx?mid=17&id=1351&chk=69134ba5-621c-49f3-9e84-c587c8bdb37c, retrieved date: Mar. 20, 2018.
[4] Y.-N. Yu, Electric Power System Dynamics, New York, NY, USA: Academic Press, 1983.
[5] P. M. Anderson, B. L. Agrawal, and J. E. V. Ness, Subsynchronous Resonance in Power Systems, New York, NY, USA: IEEE Press, 1990.
[6] ABB, Series Compensation Boosting transmission capacity, [Online]. Available: http://new.abb.com/facts/fixed-series-compensation, retrieved date: Mar. 15, 2018.
[7] IEEE SSR Working Group, “First benchmark model for computer simulation of subsynchronous resonance,” IEEE Trans. Power Apparatus and Systems, vol. PAS-96, no. 5, pp. 1565-1572, Sep. 1977.
[8] IEEE SSR Working Group, “Second benchmark model for computer simulation of subsynchronous resonance,” IEEE Trans. Power Apparatus and Systems, vol. PAS-104, no. 5, pp. 1057-1066, May 1985.
[9] IEEE Committee Report, “First supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems,” IEEE Trans. Power Apparatus and Systems, vol. PAS-98, no. 6, pp. 1872-1875, Nov. 1979.
[10] IEEE Committee Report, “Second supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems,” IEEE Trans. Power Apparatus and Systems, vol. PAS-104, no. 2, pp. 321-327, Feb. 1985
[11] Y. Tang and R. Q. Yu, “Impacts of large-scale wind power integration on subsynchronous resonance,” in Proc. 2011 Power and Energy Engineering Conference (APPEEC), Wuhan, China, Mar. 25-28, 2011, pp. 1-4.
[12] P. Chittora and N. Kumar, “An induction machine damping unit for damping SSR in a series compensated power system,” in Proc. IEEE 5th India International Conference on Power Electronics (IIICPE), New Delhi, India, Dec. 6-8, 2012, pp. 1-6.
[13] L. Fan and Z. Miao, “Mitigating SSR using DFIG-based wind generation,” IEEE Trans. Sustainable Energy, vol. 3, no. 3, pp. 349-358, Jul. 2012.
[14] J. M. González, C. A. Cañizares, and J. M. Ramírez, “Stability modeling and comparative study of series vectorial compensators,” IEEE Trans. Power Delivery, vol. 25, no. 2, pp. 1093-1102, Apr. 2010.
[15] S. O. Faried, I. Unal, D. Rai, and J. Mahseredjian, “Utilizing DFIG-based wind farms for damping subsynchronous resonance in nearby turbine-generators,” IEEE Trans. Power Systems, vol. 28, no. 1, pp. 452-459, Feb. 2013.
[16] A. Moharana and R. K. Varma, “Subsynchronous resonance in single-cage self-excited-induction-generator-based wind farm connected to series-compensated lines,” IET Generation, Transmission, & Distribution, vol. 5, no. 12, pp. 1221-1232, Sep. 2011.
[17] R. K. Varma, S. Auddy, and Y. Semsedini, “Mitigation of subsynchronous resonance in a series-compensated wind farm using FACTS controllers,” IEEE Trans. Power Delivery, vol. 23, no. 3, pp. 1645-1654, Jul. 2008.
[18] L. Fan, R. Kavasseri, Z. L. Miao, and C. Zhu, “Modeling of DFIG-based wind farms for SSR analysis,” IEEE Trans. Power Delivery, vol. 25, no. 4, pp. 2073-2082, Oct. 2010.
[19] Z. Xu and Z. Pan, “Influence of different flexible drive train models on the transient responses of DFIG wind turbine,” in Proc. 2011 International Conference on Electrical Machines and Systems (ICEMS), Beijing, China, Aug. 20-23, 2011, pp. 1-6.
[20] Z. Miao, “Impedance-model-based SSR analysis for type 3 wind generator and series-compensated network,” IEEE Trans. Energy Conversion, vol. 27, no. 4, pp. 984-991, Dec. 2012.
[21] L. Piyasinghe, Z. Miao, J. Khazaei, and L. Fan, “Impedance model-based SSR analysis for TCSC compensated type-3 wind energy delivery systems,” IEEE Trans. Sustainable Energy, vol. 6, no. 1, pp. 179-187, Jan. 2015.
[22] L. Yang, G. Y. Yang, Z. Xu, Z. Y. Dong, K. P. Wong, and X. Ma, “Optimal controller design of a doubly-fed induction generator wind turbine system for small stability enhancement,” IET Generation, Transmission & Distribution, vol. 4, no. 5, pp. 579-597, May 2010.
[23] R. K. Varma and A. Moharana, “SSR in double-cage induction generator-based wind farm connected to series-compensated transmission line,” IEEE Trans. Power Systems, vol. 28, no. 3, pp. 2573-2583, Aug. 2013.
[24] M. Wu, L. Xie, L. Cheng, and R. Sun, “A study on the impact of wind farm spatial distribution on power system sub-synchronous oscillations,” IEEE Trans. Power Systems, vol.31 no.3 pp. 2154-2162, May 2016.
[25] N. Kumar, S. Kumar, and V. Jain, “Damping subsynchronous oscillations in power system using shunt and series connected FACTS controllers,” in Proc. 2010 International Conference on Power, Control and Embedded Systems (ICPCES), Allahabad, India, Nov. 29-Dec. 1, 2010, pp. 1-5.
[26] V. Yousuf, N. Yadav, and N. Chopra, “Mitigation of subsynchronous resonance using UPFC with fuzzy logic control for power system stability,” in Proc. 7th India International Conference on Power Electronics (IICPE), Patiala, India, Nov. 17-19, 2016, pp. 1-6.
[27] C. E. Prasad and S. Vadhera, “Damping of sub-synchronous resonance using fuzzy based PI controlled UPFC,” in Proc. 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Kozhikode, India, Feb. 19-21, 2015, pp. 1-5.
[28] Y. M. Alharbi, A. A. siada, and A. F. Abdou, “Application of UPFC on stabilizing torsional oscillations and improving transient stability,” in Proc. 2013 Australasian Universities Power Engineering Conference (AUPEC), Hobart, Australia, Sep. 29-Oct. 3, 2014, pp. 1-4.
[29] S. Golshannavaz, F. Aminifar, and D. Nazarpour, “Application of UPFC to enhancing oscillatory response of series-compensated wind farm integrations,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1961-1968, Jul. 2014.
[30] H. Hosseini, A. Boudaghi, A. Mehri, S. F. Torabi, and H. Farshbar, “Mitigating SSR in hybrid system with steam and wind turbine by UPFC,” in Proc. 17th Conference on Electrical Power Distribution Networks (EPDC), Tehran, Iran, May 2-3, 2012, pp. 1-6.
[31] M. Zhang, C. Zhang, Q. Jiang, and X. Xie, “Research on multi-objective coordinated control strategy of UPFC,” in Proc. IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), Toronto, ON, Canada, May 4-7, 2014, pp. 1-6.
[32] L. Wang and Y.-Y. Hsu, “Damping of subsynchronous resonance using excitation controllers and static VAr compensations: A comparative study,” IEEE Trans. Energy Conversion, vol. 3, no. 1, pp. 6-13, Mar. 1988.
[33] P. M. Anderson and A. Bose, “Stability simulation of wind turbine systems,” IEEE Trans. Power Apparatus and Systems, vol. PAS-102, no. 12, pp. 3791-3795, Dec. 1983.
[34] E. Gholipour and S. Saadate, “Improving of transient stability of power systems using UPFC,” IEEE Trans. Power Delivery, vol. 20, no. 2, pp. 1677-1682, Apr. 2005.
[35] A. O. Ibrahim, T. H. Nguyen, D.-C. Lee, and S.-C. Kim, “A fault ride-through technique of DFIG wind turbine systems using dynamic voltage restorers,” IEEE Trans. Energy Conversion, vol. 26, no. 3, pp. 871-8823, Sep. 2011.
[36] L. Wang, X. Xie, Q. Jiang, H. Liu, Y. Li, and H. Liu, “Investigation of SSR in practical DFIG-based wind farms connected to a series-compensated power system,” IEEE Trans. Power Systems, vol. 30, no. 5, pp. 2772-2779, Sep. 2015.
[37] A. Heniche and I. Kamwa, “Control loops selection to damp inter-area oscillations of electrical networks,” IEEE Trans. Power Systems, vol. 17, no. 2, pp. 378-384, May 2002.
[38] H. A. Mohammadpour and E. Santi, “Sub-synchronous resonance analysis in DFIG-based wind farms: Definitions and problem identification - Part I,” in Proc. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, Sep. 14-18, 2014, pp. 812-819.
[39] Z. Chen, Y. Hu, and F. Blaabjerg, “Stability improvement of induction generator-based wind turbine systems,” IET Renewable Power Generation, vol. 1, no. 1, pp. 81-93, Mar. 2007.
[40] H. Khalilinia and V. Venkatasubramanian, “Subsynchronous resonance monitoring using ambient high speed sensor data,” IEEE Trans. Power Systems, vol. 31, no. 2, pp. 1073-1083, Mar. 2016.
[41] A. Nabavi-Niaki and M. R. Iravani, “Steady-state and dynamic models of unified power flow controller (UPFC) for power system studies,” IEEE Trans. Power Systems, vol. 11, no. 4, pp. 1937-1943, Nov. 1996.
[42] N. Tambey and M. L. Kothari, “Damping of power system oscillations with unified power flow controller (UPFC),” IEE Proc. Generation, Transmission & Distribution, vol. 150, no. 2, pp. 129-140, Mar. 2003.
[43] P. C. Krause, Analysis of Electric Machinery, New York, NY, USA: McGraw-Hill, 1986.
[44] P. Kundur, N. J. Balu, and M. G. Lauby, Power System Stability and Control, New York, NY, USA: McGraw-Hill, 1994.
[45] L. Fan, C. Zhu, and M. Hu “Control and analysis of DFIG-based wind turbines in a series compensated network for SSR damping,” in Proc. 2010 IEEE Power and Energy Society General Meeting, Providence, RI, USA, Sep. 30, 2010, pp. 1-6.
[46] L. Fan, C. Zhu, Z. Miao, and M. Hu “Modal analysis of a DFIG-based wind farm interfaced with a series compensated network,” IEEE Trans. Energy Conversion, vol. 26, no. 4, pp. 1010-1020, Dec. 2011.
[47] X. Xie, H. Liu, D. Jiang, and B. Zhou, “Continuous-mass-model-based mechanical and electrical co-simulation of SSR and its application to a practical shaft failure event,” IEEE Trans. Power Systems, vol. 31, no. 6, pp. 5172-5180, Nov. 2016.
[48] 賈林潔,靜態同步串聯補償器對抑制次同步共振之研究,國立成功大學電機工程學系碩士論文,2013年6月。
[49] 武光山,採用靜態同步串聯補償器於含有雙饋式感應發電機風場之大型電力系統動態穩定度改善,國立成功大學電機工程學系碩士論文,2011年6月。
[50] 呂杰龍,利用閘控串聯電容器於抑制混合蒸汽渦輪機與風渦輪機發電系統之次同步共振,國立成功大學電機工程學系碩士論文,2013年6月。
[51] 柯舜誌,利用統一功率潮流控制器於混合離岸式風場連接至台電簡化系統之穩定度分析,國立成功大學電機工程學系碩士論文,2014年7月。
校內:2023-07-01公開