| 研究生: |
邱敏瑞 Chiu, Min-Jui |
|---|---|
| 論文名稱: |
具抑制碼相關電源電流干擾之十四位元每秒兩百億次取樣數位類比轉換器 A 14-bit 20GS/s DAC with Code-Dependent Supply Current Interference Suppression |
| 指導教授: |
郭泰豪
Kuo, Tai-Haur |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 數位類比轉換器 、電源電流補償技術 、碼相關性電源電流 、電流汲取式 |
| 外文關鍵詞: | Digital-to-analog converter, supply current compensation, code-dependent supply current, Current-steering |
| 相關次數: | 點閱:102 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因應新世代通訊應用蓬勃發展,通訊積體電路的需求大幅度地上升且需具備快速及準確處理大量資料的能力。為達到上述需求,在通訊系統中的發射器需要一具備高速操作能力的高解析電流汲取式數位類比轉換器(DAC)。而針對現代化行動及衛星通訊規格,本論文中實作兩個具有奈奎式及超越奈奎式模式的高速高解析數位類比轉換器來分別涵蓋其所需的頻帶。
第一個晶片實現一個十四位元5.2GS/s之電流汲取式數位類比轉換器。在如此高速操作下,DAC的輸出線性度會受限於電流源不匹配、切換突波效應、有限輸出阻抗與碼相關性電源電流等非線性問題。為抑制由非線性問題導致的失真,本論文對該DAC採用二元隨機選擇技術、同心平行四邊形繞線、切換突波補償償及輸出阻抗補償來改善輸出的線性度。另外,為克服碼相關性電源電流效應,本論文提出電源電流補償技術來補償代碼轉換期間DAC的電源電流。因此,由於碼相關性電源電流所導致的碼相關性電源抖動可被抑制,故改善DAC輸出的線性度。相較於現有解決方法,電源電流補償技術於高速DAC中具有較少功耗與面積。最後,本論文採用電阻回授反向器來縮短所需的安定時間並抑制符碼間干擾,以利突破邏輯電路的切換速度限制,可緩解製程對於實現高速數位類比轉換器的限制。此DAC已使用台積電40nm製程工藝實現,且有源面積約為0.16mm2。根據量測結果,在整個第一耐奎斯特頻帶中,數位類比轉換器的無雜散動態範圍(SFDR)分別於低頻輸出及高頻輸出為70.3dBc及63.3dBc。在整個第二耐奎斯特頻帶中,數位類比轉換器的SFDR分別於低頻輸出及高頻輸出為58.4dBc及42.4dBc。與現有頂尖文獻之≥6-bit及≥2GS/s 40nm數位類比轉換器量測相比,品質因數達到世界最佳之壯舉,可適用於行動通訊應用,例如: 4G LTE、5G sub-6GHz及藍牙等。
第二個晶片則是沿襲第一個晶片之線性化技術,並實現一個十四位元20GS/s之電流汲取式數位類比轉換器,可支援0至20GHz訊號輸出。為提升操作速度,此晶片採用新穎的分裂式同心平行四邊形繞線佈局與具有斬波器的高速切換驅動器,並使用兩倍分時式架構實現數位碼產生器,以利降低所需推動負載且縮短資料及時脈路徑之繞線長度,且減少20GS/s DAC所需的功耗及面積。此晶片預計使用台積電40nm製程工藝製作,有源面積約為0.1mm2。根據全晶片後佈局模擬結果,不同製程變異下的數位類比轉換器輸出無雜散動態範圍分別於第一個耐奎斯特頻帶及第二個耐奎斯特頻帶可達到>58dBc及>50dBc。相比現有≥10-bit及≥6GS/s的數位類比轉換器,此DAC於fout等於10GHz時具有9dBc改善量,且於SFDR 等於 61dBc 時提升1.2倍的fout。預計晶片製作完成後,SFDR量測結果將超越現有頂尖文獻,因此更適用更多下世代行動通訊及衛星通訊等應用。
As advanced communication applications develop sustainably, the demand for communication ICs, which need to process large amounts of data quickly and accurately, is increasing vastly. To fulfill the above requirements, the high-resolution current-steering digital-to-analog converter (DAC), which has the ability for high-speed operations, is required for transmitters in the communication system. For specifications of modern mobile and satellite communication, this thesis implements two DAC ICs with Nyquist mode and over-Nyquist mode to cover their required bandwidths, respectively.
The first IC realizes a 14-bit 5.2GS/s current-steering DAC. For the high-speed operation, the output linearity of such a DAC is limited to non-linear problems, such as the mismatch of current sources, switching glitch effect, and finite output impedance. To suppress the distortion induced by these non-linear problems, this thesis adopts the random-rotated based selection (RRBS), concentric parallelogram routing (CPR), switching-glitch compensation (SGC), and output impedance compensation (OIC) for this DAC. Furthermore, to overcome the code-dependent supply current effect, which seriously degrades the DAC linearity, a supply current compensation (SCC) is proposed in this thesis to compensate for the current of the DAC’s supply during the code transition. As a result, the code-dependent supply bouncing induced by the code-dependent supply current is suppressed, thus improving the linearity of the DAC output. Compared to prior-art solutions, the SCC has less power, area, and complexity for the high-speed DAC. Finally, this DAC adopts resistive-feedback inverters to shorten the required settling time, thus suppressing the ISI error and overcoming the transition-speed limitation of logic circuits. As a result, it relaxes the process limitation to realize the high-speed DAC. This DAC has been fabricated in TSMC’s 40nm process with a 0.16mm2 active area. According to the measurement result, for the entire first Nyquist band, the spurious-free-dynamic range (SFDR) of the DAC with a low-frequency output (low fout) and a high-frequency output (high fout) are 70.3dBc and 63.3dBc, respectively. For the entire second Nyquist band, the SFDR of the DAC with a low fout output and a high fout are 58.4dBc and 42.4dBc, respectively. Compared to the measurements of state of the art ≥6-bit and ≥2GS/s 40nm DACs, this DAC has the best figure of merit (FoM), thus being suitable for mobile communications, such as 4G LTE, 5G sub-6GHz, and Bluetooth.
The second IC adopts the linearization techniques of the first chip and realizes a 14-bit 20GS/s current-steering DAC with a 0.1mm2 active area, which can support output signals with 0-20GHz. To enhance the operation speed, this chip adopts the novel split concentric parallelogram routing (SCPR), high-speed switch drivers with choppers, and the 2X time-interleaved digital code generator to alleviate the required driving loading and shorten the routing length of the data and clock paths, thus decreasing the required power and area of the DAC. This chip is expected to be fabricated in TSMC’s 40nm process with a 0.1mm2 active area. According to the result of the whole-chip post-layout simulation, the DAC analog output achieves >58dBc SFDR in the first Nyquist band and >51dBc SFDR in the second Nyquist band under different process corners. Compared to state of the art ≥10-bit and ≥6GS/s DACs, this DAC achieves a 9-dB better SFDR with fout equal to 10 GHz, and a 1.2x higher fout with an SFDR equal to 61dBc. After this chip has been fabricated as expected, the measured SFDR will surpass the state of the art. Therefore, it is suitable for many next-generation mobile and satellite communication systems.
[1] “IEEE Standard Letter Designations for Radar-Frequency Bands - Redline,” in IEEE Std 521-2019 (Revision of IEEE Std 521-2002) - Redline , vol., no., pp.1-22, 14 Feb. 2020.
[2] S.-Y-S Chen, N.-S Kim, and J. Rabaey., “A 10b 600MS/s Multi-mode CMOS DAC for Multiple Nyquist Zone Operation” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2011, pp. 1–2.
[3] C. Erdmann et al., "16.3 A 330mW 14b 6.8GS/s dual-mode RF DAC in 16nm FinFET achieving −70.8dBc ACPR in a 20MHz channel at 5.2GHz," 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 280-281.
[4] M. J. M. Pelgrom, A. C. J. Duinmaijer and A. P. G. Welbers, "Matching properties of MOS transistors," in IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 1433-1439, Oct. 1989.
[5] A. Nazemi et al., "3.4 A 36Gb/s PAM4 transmitter using an 8b 18GS/S DAC in 28nm CMOS," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, 2015, pp. 1-3.
[6] Wei-Hsin Tseng, Chi-Wei Fan, and Jieh-Tsorng Wu, “A 12-Bit 1.25-GSps DAC in 90 nm CMOS with over 70 dB SFDR up to 500 MHz,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2845-2856, Dec. 2011.
[7] D. Lee, Y. Lin and T. Kuo, "Nyquist-Rate Current-Steering Digital-to-Analog Converters With Random Multiple Data-Weighted Averaging Technique and QN Rotated Walk Switching Scheme," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 11, pp. 1264-1268, Nov. 2006
[8] Wei-Te Lin, and Tai-Haur Kuo, “A Compact Dynamic-Performance-Improved Current-Steering DAC With Random Rotation-Based Binary-Weighted Selection,” IEEE J. Solid-State Circuits, vol. 47, no. 2, pp. 444-453, Feb. 2012.
[9] G. A. M. Van Der Plas, J. Vandenbussche, W. Sansen, M. S. J. Steyaert and G. G. E. Gielen, "A 14-bit intrinsic accuracy Q/sup 2/ random walk CMOS DAC," in IEEE Journal of Solid-State Circuits, vol. 34, no. 12, pp. 1708-1718, Dec. 1999.
[10] H.-Y. Huang and T.-H. Kuo, “A 0.07 mm2 162 mW DAC achieving > 65 dBc SFDR and < −70 dBc IM3 at 10 GS/s with output impedance compensation and concentric parallelogram routing,” IEEE J. Solid-State Circuits, vol. 55, no. 9, pp. 2478–2488, Sep. 2020.
[11] H. -Y. Huang, X. -Y. Chen and T. -H. Kuo, "A 10-GS/s NRZ/Mixing DAC With Switching-Glitch Compensation Achieving SFDR >64/50 dBc Over the First/Second Nyquist Zone," in IEEE Journal of Solid-State Circuits, vol. 56, no. 10, pp. 3145-3156, Oct. 2021.
[12] L. Lai, X. Li, Y. Fu, Y. Liu and H. Yang, "Demystifying and Mitigating Code-Dependent Switching Distortions in Current-Steering DACs," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 1, pp. 68-81, Jan. 2019.
[13] G. -S. Jeong et al., "A 20 Gb/s 0.4 pJ/b Energy-Efficient Transmitter Driver Utilizing Constant- Gm Bias," in IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp. 2312-2327.
[14] P. -J. Peng, Y. -T. Chen, S. -T. Lai and H. -E. Huang, "A 112-Gb/s PAM-4 Voltage-Mode Transmitter With Four-Tap Two-Step FFE and Automatic Phase Alignment Techniques in 40-nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 56, no. 7, pp. 2123-2131, July 2021.
[15] S. Luschas and H.-S. Lee, “Output impedance requirements for DACs,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2003, pp. I-861–I-864.
[16] C.-H. Lin et al., “A 12 bit 2.9 GS/s DAC with IM3 <−60 dBc beyond 1 GHz in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3285–3293, Dec. 2009.
[17] P. Palmers and M. J. Steyaert, “A 10-Bit 1.6-GS/s 27-mW current steering D/A converter with 550-MHz 54-dB SFDR bandwidth in 130-nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 11, pp. 2870–2879, Nov. 2010.
[18] Xavier Aragonès, José Luis González, Antonio Rubio, “Analysis and solutions for switching noise coupling in Mixed-signal IC”
[19] M. Fulde et al., "13.2 A digital multimode polar transmitter supporting 40MHz LTE Carrier Aggregation in 28nm CMOS," 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 218-219
[20] D. Gruber et al., "10.6 A 12b 16GS/s RF-Sampling Capacitive DAC for Multi-Band Soft-Radio Base-Station Applications with On-Chip Transmission-Line Matching Network in 16nm FinFET," 2021 IEEE International Solid- State Circuits Conference (ISSCC), 2021, pp. 174-176.
[21] C. Lin et al., "A 16b 6GS/S nyquist DAC with IMD <-90dBc up to 1.9GHz in 16nm CMOS," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), 2018, pp. 360-362.
[22] S. Spiridon, H. Yan and H. Eberhart, "A linearity improvement technique for overcoming signal-dependent induced switching time mismatch in DAC-Based transmitters," ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC), 2015, pp. 347-347c.
[23] S. Su and M. S. Chen, "A 16-bit 12-GS/s Single-/Dual-Rate DAC With a Successive Bandpass Delta-Sigma Modulator Achieving <−67-dBc IM3 Within DC to 6-GHz Tunable Passbands," in IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3517-3527, Dec. 2018.
校內:2027-09-16公開