| 研究生: |
鍾允翔 Chung, Yun-Hsiang |
|---|---|
| 論文名稱: |
彰化地區離岸風場無凝聚性土壤小應變動態特性參數研究 Study of small strain dynamic properties of soil in offshore wind farm near Changhua area |
| 指導教授: |
郭玉樹
Kuo, Yu-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 離岸風電 、基礎設計 、工址地盤反應分析 、土壤共振柱試驗 、土壤動態特性參數 |
| 外文關鍵詞: | offshore wind, foundation design, ground motion analysis, resonant column test, dynamic properties |
| 相關次數: | 點閱:49 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自2011年經濟部能源局推動「千架海陸風力機計畫」,並於2012年公告「風力發電離岸系統示範獎勵辦法」,使得台灣風能發展重心由陸域移向海域。2018年公布「離岸風力發電規劃場址容量分配作業要點」,最快於2020年達成近740 MW之離岸風力發電裝置容量併網。目前我國離岸風機基礎設計規範「台灣離岸風場耐震設計基本要求」CNS-15176-1提供離岸風機基礎設計時,設計人員對離岸風機耐震設計需求之依循。德國BSH訂定離岸風機海域土壤調查規範BSH(2008),建議於離岸風機基礎設計時除了進行離岸風場現地試驗,也需要配合室內土壤力學試驗以取得不同設計考量之地工設計參數,並要求將反覆載重之效應納入離岸風機基礎設計考量,配合室內土壤動態力學試驗以取得土壤動態特性參數。
本研究針對台灣彰濱近海離岸風場中等緊密重模土樣進行土壤共振柱試驗,取得小應變條件之土壤動態特性參數,包括土壤剪力波速、剪力模數、剪應變及阻尼比,分析土壤動態特性參數之影響因子,提出適合台灣彰濱近海離岸風場重模土樣之土壤動態特性參數半經驗推估式,以合理估算現地土樣之土壤動態特性參數。最後針對台灣彰濱近海離岸風場參考孔位進行工址地盤反應分析,討論中等緊密砂土之土壤動態特性參數取得方法對其之影響。
In the development of Taiwan offshore wind farm industry, local foundation design standard CNS-15176-1 had been released. Except for local standard, offshore wind farm develope companies also follow international standard. BSH (2008) clearly stated that it is necessary to combine experiment result during the fundamental design in offshore wind turbine. In this research, resonant column tests were performed to determine dynamic properties in the small strain rate. Influence factors of dynamic property were discussed in this research, including confining pressure, voil ratio and fine content. According to the test results, maximum shear modulus increased with confining pressure, relative density, decreased with void ratio and fine content. This phenomenon had same trend as previous research. Base on the test results, this research derived empirical equations of dynamic properties for medium-dense sand. Finally, the influence of different dynamic property determine methods in ground motion analysis for reference borehole near Changhua area was discussed in this research. The results of this research can be used in foundation design for ground motion analysis and dynamic analysis of offshore wind turbine.
[1.] ASTM C778-13 (2013). “Standard Specification for Standard Sand,” American Society for Testing and Materials, USA.
[2.] ASTM D854-14 (2014). “Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer,” American Society for Testing and Materials, USA.
[3.] ASTM D4015-15 (2015). “Standard Test Methods for Modulus and Damping of Soils by Fixed-base Resonant Column Devices,” American Society for Testing and Materials, USA.
[4.] ASTM D4253-14 (2014). “Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table,” American Society for Testing and Materials, USA.
[5.] ASTM D4254-14 (2014). “Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density,” American Society for Testing and Materials, USA.
[6.] ASTM D7181-11 (2011). “Method for Consolidated Drained Triaxial Compression Test for Soils,” American Society for Testing and Materials, USA.
[7.] Baki, M. A. L., Rahman, M. M. and Lo, S. R. (2014). “Predicting onset of cyclic instability of loose sand with fines using instability curves,” Soil Dynamics and Earthquake Engineering, Vol. 61, pp,140-151.
[8.] BSH (2008). Standard Soil Investigations for Offshore Wind Farms. Federal Maritime and Hydrographic Agency of Germany (BSH); in German.
[9.] Bui, M. T. (2009). “Influence of some particle characteristics on the small strain response of granular materials,” PhD. thesis, University of Southampton.
[10.] Carraro, J. A. H., Prezzi, M. and Salgado, R. (2009). “Shear strength and stiffness of sands containing plastic or nonplastic fines,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 9, pp.1167-1178.
[11.] Chang, H., Cho, G. C., Lee, J. G. and Kim, L. H. (2006). “Characterization of clay sedimentation using piezoelectric bender elements,” Engineering Materials, Vol. 321, pp.1415-1420.
[12.] Chien, L. K. and Oh, Y. N. (2002). “Influence of fines content and initial shear stress on dynamic properties of hydraulic reclaimed soil,” Canadian Geotechnical Journal, Vol. 39, No. 1, pp.242-253.
[13.] Clayton, C. R. I. (2011). “Stiffness at small strain research and practice,” Géotechnique, Vol. 61, No.1, pp.5-37.
[14.] Darendeli, M. B. (2001). “Development of a new family of normalized modulus reduction and material damping curves,” PhD thesis, The University of Texas at Austin.
[15.] Das, B. M. (1993). “Principles of Soil Dynamics,” PWS.
[16.] Det Norske Veritas (DNV) and Wind Energy Department (Riso National Laboratory). (2002). “Guideline for Design of Wind Turbines,” Printed by Jydsk Centraltrykkeri, Denmark.
[17.] Det Norske Veritas Germanischer Lloyd. (2018). “Support structures for wind turbines,” DNVGL-ST-0126, Høvik, Norway.
[18.] Drnevich, V. P. (1978). “Resonant-column testing: Problems and solutions,” Dynamic Geotechnical Testing, pp.384-398.
[19.] Fioravante, V. (2000). “Anisotropy of small strain stiffness of Ticino and Kenya sands from seismic wave propagation measured in triaxial testing,” Soils and foundations, Vol. 40, No. 4, pp.129-142.
[20.] Goudarzy, M. (2015). “Micro and macro mechanical assessment of small and intermediate strain properties of granular material,” PhD thesis, Ruhr Universität Bochum.
[21.] Goudarzy, M., König, D. and Schanz, T. (2018). “Small and intermediate strain properties of sands containing fines,” Soil Dynamics and Earthquake Engineering, Vol. 110, pp.110-120.
[22.] Goudarzy, M., Rahemi, N., Rahman, M. M. and Schanz, T. (2017). “Predicting the maximum shear modulus of sands containing nonplastic fines,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 143, No. 9, pp.06017013.
[23.] Hardin, B. O. (1978). “The nature of stress-strain behavior for soils,” Proc. Geotechnical Engineering Division Specialty Conference on Earthquake Engineering and Soil Dynamics, ASCE, Pasadena, Vol. 1, pp.3-90.
[24.] Hardin, B. O. and Black, W. L. (1966). “Sand stiffness under various triaxial stresses,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. SM2, pp.27-42.
[25.] Hardin, B. O. and Drnevich, V. P. (1972). “Shear Modulus and Damping in Soils Design Equations and Curves,” Journal of Soil Mechanics and Foundations Div., Vol. 98, No. SM7, pp.667-692.
[26.] Hardin, B. O. and Richart Jr, F. E. (1963). “Elastic wave velocities in granular soils,” Journal of Soil Mechanics and Foundations Div., Vol. 89, Proc. Paper 3407.
[27.] Iida, K. (1937). “The velocity of elastic wave in sands”, Earthquake research institute, pp.132-145.
[28.] Ishibashi, I. and Zhang, X. (1993). “Unified dynamic shear moduli and damping ratios of sand and clay,” Soils and foundations, Vol. 33, No. 1, pp.182-191.
[29.] Ishibashi, I., Chen, Y. C. and Chen, M. T. (1991). “Anisotropic behavior of ottawa sand in comparison with glass spheres,” Soils and Foundations, Vol. 31, pp.145-155.
[30.] Iwasaki, T. and Tatsuoka, F. (1977). “Efects of grain size and grading on dynamic shear moduli of sands,” Soils and Foundations, Vol. 17, pp.19-35.
[31.] Iwasaki, T., Tatsuoka, F. and Takagi, Y. (1978). “Shear moduli of sands under cyclic torsional shear loading,” Soils and Foundations, Vol. 18, No. 1, pp.39-56.
[32.] Jaky, J. (1944). “The coefficient of earth pressure at rest,” Journal of the Society of Hungarian Architects and Engineers, pp.355-358.
[33.] Jamiolkowski, M., Lancellotta, R. and Lo Presti, D. (1995). “Remarks on the stiffness at small strains of six Italian clays,” Pre-failure Deformation of Geomaterials, Vol. 1, pp.817-836.
[34.] Jovičić, V. and Coop, M. R. (1997). “Stiffness of coarse-grained soils at small strains,” Géotechnique, Vol. 47, No. 3, pp.545-561.
[35.] Kokusho, T. (1980). “Cyclic triaxial test of dynamic soil properties for wide strain range,” Soils and foundations, Vol. 20, No. 2, pp.45-60.
[36.] Kokusho, T., Yoshida, Y. and Esashi, Y. (1982). “Dynamic properties of soft clay for wide strain range,” Soils and Foundations, Vol. 22, No. 4, pp.1-18.
[37.] Lashkari, A. (2014). “Recommendations for extension and re-calibration of an existing sand constitutive model taking into account varying non-plastic fines content,” Soil Dynamics and Earthquake Engineering, Vol. 61, pp.212-238.
[38.] Lo Presti, D. C. F., Pallara, O., Lancellotta, R. and Armandi, M. R. M. (1993). “Monotonic and cyclic loading behavior of two sands at small strains,” Geotechnical Testing Journal, Vol. 16, pp.409-424.
[39.] Lo Presti, D., Jamiolkowski, M., Pallara, O., Cavallaro, A. and Pedroni, S. (1997). “Shear modulus and damping of soils,” Geotechnique, Vol. 47, pp.603-617.
[40.] Peck, R. B., Hanson, W. E. and Thornburn, T. H. (1953). “Foundation Engineering, Lww.”
[41.] Park, D. and Stewart, H. E. (2001). “Suggestion of empirical equations for damping ratio of plastic and non-plastic soils based on the previous studies,” Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics.
[42.] Rahman, M. M. and Lo, S. R. (2014). “Undrained behavior of sand-fines mixtures and their state parameter,” Journal of geotechnical and geoenvironmental engineering, Vol. 140, No.7, pp.04014036.
[43.] Rahman, M. M., Cubrinovski, M. R. L. S. and Lo, S. R. (2012). “Initial shear modulus of sandy soils and equivalent granular void ratio,” Geomechanics and Geoengineering, Vol. 7, No. 3, pp.219-226.
[44.] Rahman, M. M., Lo, S. R. and Gnanendran, C. T. (2008). “On equivalent granular void ratio and steady state behaviour of loose sand with fines,” Canadian Geotechnical Journal, Vol. 45, No. 10, pp.1439-1456.
[45.] Salgado, R., Bandini, P. and Karim, A. (2000). “Shear strength and stiffness of silty sand,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 5, pp.451-462.
[46.] Seed, H. B. and Idriss, I. M. (1970). “Soil moduli and damping factors for dynamic response analyses,” Report No. EERC 70-10, Earthquake Engineering Resource Center, University of California, Berkley, California.
[47.] Seed, H. B., Mori, K. and Chan, C. K. (1975). “Influence of seismic history on the liquefaction characteristics of sands,” Report EERC 75-25, Earthquake Engineering Research Center, University of California, Berkeley, 21.
[48.] Seed, H. B., Wong, R. T., Idriss, I. M. and Tokimatsu, K. (1986). “Moduli and damping factors for dynamic analyses of cohesionless soils,” Journal of geotechnical engineering, Vol. 112, No. 11, pp.1016-1032.
[49.] Shibuya, S., Hwang, S. C. and Mitachi, T. (1997). “Elastic shear modulus of soft clays from shear wave velocity measurement,” Geotechnique, Vol. 47, No. 3, pp.593-601.
[50.] Smoltczyk, U. (2001) “Grundbau-Taschenbuch Teil 1,” Geotechnische Grundlagen. Sechste Auflage, Ernst & Sohn.
[51.] Stokoe, K. H., Darendeli, M. B., Andrus, R. D. and Brown, L. T. (1999). “Dynamic soil properties: laboratory, field and correlation studies,” Proceedings of the 2nd International Conference on Earthquake Geotechnical Engineering, Lisbon, pp.811-846.
[52.] Tao, M., Figueroa, J. L. and Saada, A. S. (2004). “Influence of nonplastic fines content on the liquefaction resistance of soils in terms of the unit energy,” Proceedings of the Cyclic Behaviour of Soils and Liquefaction Phenomena, Bochum, Germany, Vol. 31, pp.223-231.
[53.] Thevanayagam, S., Shenthan, T., Mohan, S. and Liang, J. (2002). “Undrained fragility of clean sands, silty sands, and sandy silts,” Journal of geotechnical and geoenvironmental engineering, Vol. 128, No. 10, pp.849-859.
[54.] Vucetic, M. and Dobry, R. (1991). “Effect of soil plasticity on cyclic response,” Journal of geotechnical engineering, Vol. 117, No. 1, pp.89-107.
[55.] Wang, Y. H. and Mok, C. M. (2008). “Mechanisms of small-strain shear-modulus anisotropy in soils,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 134, No. 10, pp.1516-1530.
[56.] Wichtmann, T. and Triantafyllidis, T. (2009). “On the correlation of ‘static’ and ‘dynamic’ stiffness moduli of non‐cohesive soils,” Bautechnik, Vol. 86, No. S1, pp.28-39.
[57.] Wichtmann, T. and Triantafyllidis, T. (2013a). “Effect of uniformity coefficient on G/Gmax and damping ratio of uniform to well-graded quartz sands,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 1, pp.59-72.
[58.] Wichtmann, T., Hernández, M. N. and Triantafyllidis, T. (2015). “On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand,” Soil Dynamics and Earthquake Engineering, Vol. 69, pp.103-114.
[59.] 大彰化西北離岸風力發電股份有限公司(2017),「大彰化西北離岸風力發電計畫環境影響說明書」
[60.] 大彰化東北離岸風力發電股份有限公司(2017),「大彰化東北離岸風力發電計畫環境影響說明書」
[61.] 大彰化西南離岸風力發電股份有限公司(2017),「大彰化西南離岸風力發電計畫環境影響說明書」
[62.] 大彰化東南離岸風力發電股份有限公司(2017),「大彰化東南離岸風力發電計畫環境影響說明書」
[63.] 內政部營建署(2011),「建築物耐震設計規範及解說」,營建雜誌社,台北
[64.] 中能發電股份有限公司(2017),「中能離岸風力發電開發計畫環境影響說明書」
[65.] 台灣電力股份有限公司(2009),「彰濱離岸風力發電計畫可行性研究」。
[66.] 台灣電力股份有限公司(2014),「離岸風力發電第一期可行性研究」
[67.] 台灣電力股份有限公司(2017),「離岸風力發電第一期計畫環境影響說明書」。
[68.] 台灣電力股份有限公司(2019),「地質鑽探調查結果報告書」。
[69.] 西島風力發電股份有限公司籌備處(2017),「彰化西島離岸風力發電計畫環境影響說明書」。
[70.] 林筠蓁(2019),「彰化地區離岸風場三維工程地質模型研究」,碩士論文,國立成功大學水利所,台南
[71.] 海峽風電股份有限公司籌備處(2017),「海峽離岸風力發電計畫(27號風場)環境影響說明書」。
[72.] 海峽風電股份有限公司籌備處(2017),「海峽離岸風力發電計畫(28號風場)環境影響說明書」。
[73.] 海鼎一風力發電股份有限公司籌備處(2017) ,「海鼎離岸式風力發電計畫1號風場環境影響說明書」
[74.] 海鼎二風力發電股份有限公司籌備處(2017) ,「海鼎離岸式風力發電計畫2號風場環境影響說明書」
[75.] 海鼎三風力發電股份有限公司籌備處(2017) ,「海鼎離岸式風力發電計畫3號風場環境影響說明書」
[76.] 海龍二號風電股份有限公司籌備處(2017) ,「海龍二號離岸風力發電計畫環境影響說明書」
[77.] 海龍三號風電股份有限公司籌備處(2017) ,「海龍三號離岸風力發電計畫環境影響說明書」
[78.] 郭玉樹(2017),「離岸風場地工設計參數資料庫建置與應用」成果報告,科技部
[79.] 郭玉樹、許丁友、柴駿甫、盧恭君(2018),第二期能源國家型科技計畫「離岸風機基礎穩定性風險評估」,科技部
[80.] 郭玉樹、蘇志杰、蕭士俊、董東璟、呂宗行、劉家瑄、許丁友、許泰文、李心平、徐子圭、張懿、盧恭君、柴駿甫、苗君易(2018),第二期能源國家型科技計畫「離岸風機水下基礎設計暨維護決策資料庫與展示平台開發」成果報告,科技部
[81.] 財團法人國家實驗研究院國家地震工程研究中心(2018),「台灣離岸風場耐震設計基本要求」,CNS-15176-1
[82.] 許哲維(2018),「地工設計參數不確定性對大口徑單樁基礎穩定性影響研究」,碩士論文,國立成功大學水利所,台南
[83.] 福芳風力發電股份有限公司籌備處(2017),「彰化福芳離岸風力發電計畫環境影響說明書」
[84.] 彰芳風力發電股份有限公司籌備處(2017),「彰化彰芳離岸風力發電計畫環境影響說明書」
[85.] 福海風力發電股份有限公司籌備處(2013),「福海離岸風力發電計畫(第一期)環境影響說明書」
[86.] 福海風力發電股份有限公司(2016),「福海彰化離岸風力發電計畫環境影響說明書」
校內:2024-08-31公開