簡易檢索 / 詳目顯示

研究生: 裴杜進盛
Bui Do Tien Thinh
論文名稱: 以流體化床技術從合成廢水中去除和回收鋰
Removal and recovery of Lithium from synthetic wastewater by using Fluidized-bed Homogeneous Crystallization technology
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 106
中文關鍵詞: 流體化床
外文關鍵詞: lithium phosphate, fluidized-bed, homogeneous crystallization, total removal, crystallization ratio
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The production of lithium-based on primary sources has been facing the issue that increasing demand might not be met. The trend of recovering lithium from secondary resources including groundwater, brine water, and lithium-battery-recycling-plant wastewater is receiving attention. Numerous technologies such as chemical precipitation and adsorption have been developed to recover lithium from wastewater. These methods mentioned above are not applied commonly in the industry because of drawbacks like high operating cost and/or the production of secondary waste- sludge. Fluidized-bed crystallization technology was investigated a few decades ago, reducing the sludge production by crystallizing on the fluidized medium. This technology has not been applied for treatment of lithium-containing wastewater, however, impurity of products caused by the presence of the heterogeneous seed makes this method not suitable for the recent trend of a sustainable environment. There has been development in the conventional fluidized-bed crystallization process, which is fluidized-bed homogeneous crystallization technology. In a fluidized-bed homogeneous crystallization system, precise hydraulic control of supersaturation degree leads to spontaneous nucleation and particle growth in the bed without any supporting seeds.
    In this study, lithium synthetic wastewater was treated by fluidized-bed homogeneous crystallization. Factors including final pHf, initial [P]0 : [Li]0 molar ratio, reaction time, temperature were tested while operating jar-test. Lithium phosphate particles were recovered from lithium synthetic wastewater by the investigation of fluidized-bed homogeneous crystallization technology with factors such as temperature, effluent pHe, [P]0 : [Li]0 molar ratio, lithium initial concentration, cross-sectional loading, static bed height, seed size and upflow velocity. Product crystals were characterized for surface morphology, crystal structure, and composition analysis. The investigation claimed that effluent pHe and temperature were key factors for maximization of lithium total removal efficiency (TR) and crystallization ratio (CR). Optimal conditions including temperature of 75°C, [P]0 : [Li]0 molar ratio of 1 : 2, initial lithium concentration of solution around 1000 mg/L (0.14 M), cross-sectional loading of 2.5 kg/m2.h, static bed height higher than 25 cm, seed size of 0.2 mm will lead to suitable supersaturation degree for crystallization process with results for lithium total removal of 90% and crystallization ratio of around 88%. By operating fluidized-bed homogeneous crystallization process at optimal hydraulic conditions, high purity particles of lithium phosphate (Li3PO4, # 15-0760) were be recovered from synthetic wastewater.

    TABLE OF CONTENTS ABSTRACT I ACKNOWLEDGMENT III TABLE OF CONTENTS V LISTS OF TABLES VIII LIST OF FIGURES IX I. INTRODUCTION 1 1.1 Background 1 1.2 Research objective 3 II. LITERATURE REVIEW 4 2.1 Lithium 4 2.1.1 Lithium chemistry 4 2.1.2 Lithium application 4 2.1.3 Lithium pollutant sources 5 2.1.4 Lithium standard for drinking water 6 2.2 Lithium removal technology 7 2.2.1 Chemical precipitation and coagulation/ flocculation 12 2.2.2 Adsorption 12 2.2.3 Membrane separation 13 2.3 Phosphorus 13 2.3.1 Phosphorus chemistry 14 2.3.2 Phosphorus application 15 2.3.3 Phosphorus wastewater sources 16 2.3.4 Phosphorus discharge standard 16 2.4 Phosphorus removal technology 17 2.4.1 Phosphorus precipitation and flocculation process. 17 2.4.2 Biological treatment 18 2.4.3 Adsorption 19 2.4.4 Ion-exchange 20 2.4.5 Membrane separation 21 2.5 Lithium phosphate solubility 23 2.6 Fluidized-bed homogeneous crystallization (FBHC) 25 2.7 Nucleation and Crystal growth 27 2.7.1 Nucleation 28 2.7.2 Crystal growth 30 2.8 Fluidization 33 2.9 Mechanism of homogeneous nucleation 37 2.10 Lithium phosphate 38 III. METHODOLOGY 44 3.1 Research framework 44 3.2 Material 46 3.3 Analytical method 46 3.4 Data Analysis 47 3.5 Analytical instruments 48 3.6 Experimental procedure 52 IV. RESULTS AND DISCUSSION 56 4.1 Chemical precipitation of Li3PO4 56 4.1.1 Effect of final pH (pHf) 56 4.1.2 Effect of initial [P]0 : [Li]0 molar ratio 57 4.1.3 Effect of reaction time 59 4.1.4 Effect of initial concentration 63 4.1.5 Effect of temperature 66 4.1.6 Crystal structure analysis of precipitation product. 70 4.2 Lithium removal and recovery by FBHC 71 4.2.2 Steady-state determination. 72 4.2.3 Effect of temperature 76 4.2.4 Effect of final pH of effluent output (pHe). 78 4.2.5 Effect of [P]0 : [Li]0 molar ratio. 80 4.2.6 Effect of initial lithium concentration. 82 4.2.7 Effect of upflow velocity. 84 4.2.8 Effect of hydraulic retention time (HRT). 85 4.2.9 Effect of cross-sectional loading. 86 4.2.10 Effect of static bed height (H0). 88 4.2.11 Effect of lithium phosphate seed size. 90 4.2.12 Characterization of FBHC product. 92 V. CONCLUSIONS AND RECOMMENDATION. 98 5.1 Conclusions. 98 5.2 Recommendation. 98 REFERENCES. 100

    REFERENCE
    [1] S. Kean, The Disappearing Spoon: And Other True Tales of Madness, Love and the History of the World from the Periodic Table of the Elements, Random House, 2011.
    [2] K. Lodders, Solar system abundances and condensation temperatures of the elements, Astrophys. J. 591 (2003) 1220.
    [3] F. Barnaby, How nuclear weapons spread: Nuclear-weapon proliferation in the 1990s, Routledge, 2012.
    [4] R.E. Krebs, The history and use of our earth’s chemical elements: a reference guide, Greenwood Publishing Group, 2006.
    [5] C. Huang, V. V Kresin, Note: Contamination-free loading of lithium metal into a nozzle source, Rev. Sci. Instrum. 87 (2016) 66105.
    [6] C.C. Addison, The chemistry of the liquid alkali metals, (1984).
    [7] R. Priambodo, Phosphorus contained TFT-LCD wastewater treatment by Fluidized Bed Crystallization: formation of vivianite and its application for cathode LiFePO4 manufacturing, National Cheng Kung University, 2017.
    [8] R. Priambodo, Y.-L. Tan, Y.-J. Shih, Y.-H. Huang, Fluidized-bed crystallization of iron phosphate from solution containing phosphorus, J. Taiwan Inst. Chem. Eng. 80 (2017) 247–254.
    [9] C.R. Hammond, The elements, Handb. Chem. Phys. 81 (2000) 19.
    [10] J. Emsley, Nature’s building blocks: an AZ guide to the elements, Oxford University Press, 2011.
    [11] M. Baskaran, Handbook of environmental isotope geochemistry, Springer Science & Business Media, 2011.
    [12] S. Kim, J. Kim, S. Kim, J. Lee, J. Yoon, Electrochemical lithium recovery and organic pollutant removal from industrial wastewater of a battery recycling plant, 2018. https://doi.org/10.1039/c7ew00454k.
    [13] V. V Struzhkin, M.I. Eremets, W. Gan, H. Mao, R.J. Hemley, Superconductivity in dense lithium, Science (80-. ). 298 (2002) 1213–1215.
    [14] A.W. Overhauser, Crystal structure of lithium at 4.2 K, Phys. Rev. Lett. 53 (1984) 64.
    [15] U. Schwarz, Metallic high-pressure modifications of main group elements, Zeitschrift Für Krist. Mater. 219 (2004) 376–390.
    [16] A. Somrani, A.H. Hamzaoui, M. Pontie, Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO), Desalination. 317 (2013) 184–192. https://doi.org/10.1016/j.desal.2013.03.009.
    [17] Y.J. Song, Recovery of lithium as Li3PO4 from waste water in a LIB recycling process, J. Korean Inst. Met. Mater. 56 (2018) 755–762. https://doi.org/10.3365/KJMM.2018.56.10.755.
    [18] H. Chen, D. Wang, X. Li, Q. Yang, K. Luo, G. Zeng, M. Tang, W. Xiong, G. Yang, Effect of dissolved oxygen on biological phosphorus removal induced by aerobic/extended-idle regime, Biochem. Eng. J. 90 (2014) 27–35.
    [19] T. Tervahauta, R.D. van der Weijden, R.L. Flemming, L.H. Leal, G. Zeeman, C.J.N. Buisman, Calcium phosphate granulation in anaerobic treatment of black water: a new approach to phosphorus recovery, Water Res. 48 (2014) 632–642.
    [20] J. Xie, Z. Wang, S. Lu, D. Wu, Z. Zhang, H. Kong, Removal and recovery of phosphate from water by lanthanum hydroxide materials, Chem. Eng. J. 254 (2014) 163–170.
    [21] L. Ruihua, Z. Lin, T. Tao, L. Bo, Phosphorus removal performance of acid mine drainage from wastewater, J. Hazard. Mater. 190 (2011) 669–676.
    [22] H. Huang, D. Zhang, Z. Zhao, P. Zhang, F. Gao, Comparison investigation on phosphate recovery from sludge anaerobic supernatant using the electrocoagulation process and chemical precipitation, J. Clean. Prod. 141 (2017) 429–438.
    [23] C. Kappel, K. Yasadi, H. Temmink, S.J. Metz, A.J.B. Kemperman, K. Nijmeijer, A. Zwijnenburg, G.-J. Witkamp, H.H.M. Rijnaarts, Electrochemical phosphate recovery from nanofiltration concentrates, Sep. Purif. Technol. 120 (2013) 437–444.
    [24] Y. Song, Y. Dai, Q. Hu, X. Yu, F. Qian, Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater, Chemosphere. 101 (2014) 41–48.
    [25] M.S. Rahaman, D.S. Mavinic, A. Meikleham, N. Ellis, Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor, Water Res. 51 (2014) 1–10.
    [26] I. Ore, I.O. Pigments, P. Rock, Q. Crystal, R. Earths, S. Ash, Mineral Commodity Summaries 2021, 2021.
    [27] C.W. Kamienski, D.P. McDonald, M.W. Stark, J.R. Papcun, Lithium and lithium compounds, Kirk‐Othmer Encycl. Chem. Technol. (2000).
    [28] L. Gaines, P. Nelson, Lithium-ion batteries: possible materials issues, in: 13th Int. Batter. Mater. Recycl. Semin. Exhib. Broward Cty. Conv. Center, Fort Lauderdale, Florida, 2009: p. 16.
    [29] S.J. Rand, A.W. Verstuyft, Significance of tests for petroleum products, ASTM International Newburyport, 2010.
    [30] J. Lieb, A. Zeff, Lithium treatment of chronic cluster headaches, Br. J. Psychiatry. 133 (1978) 556–558.
    [31] A. Katwala, The spiralling environmental cost of our lithium battery addiction, WIRED on Energy. (2018).
    [32] N.S. Reynolds, R.L. Draper, The future of nuclear power, Nat. Resour. Environ. 8 (1994) 9–50.
    [33] M.U. Hayyat, R. Nawaz, Z. Siddiq, M.B. Shakoor, M. Mushtaq, S.R. Ahmad, S. Ali, A. Hussain, M.A. Irshad, A.A. Alsahli, Investigation of Lithium Application and Effect of Organic Matter on Soil Health, Sustainability. 13 (2021) 1705.
    [34] P. Toft, M. Malaiyandi, J.R. Hickman, Guidelines for Canadian drinking water quality, (1987).
    [35] N. NHMRC, Australian drinking water guidelines paper 6 national water quality management strategy, Natl. Heal. Med. Res. Counc. Natl. Resour. Manag. Minist. Counc. Commonw. Aust. Canberra. (2011) 5–7.
    [36] E. Weinthal, Y. Parag, A. Vengosh, A. Muti, W. Kloppmann, The EU drinking water directive: the boron standard and scientific uncertainty, Eur. Environ. 15 (2005) 1–12.
    [37] H. Wakayama, Revision of drinking water quality standards in Japan, MHLW, Japan.–2004.–16 P. (2004).
    [38] P.S. Shin, Y.R. Song, Y.J. Choi, Y.S. Park, Seoul (Korea) Online water quality monitoring of drinking water, in: World Environ. Water Resour. Congr. 2009 Gt. Rivers, 2009: pp. 1–9.
    [39] X.Y. Nie, S.Y. Sun, Z. Sun, X. Song, J.G. Yu, Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes, Desalination. 403 (2017) 128–135. https://doi.org/10.1016/j.desal.2016.05.010.
    [40] F. Edition, Guidelines for drinking-water quality, WHO Chron. 38 (2011) 104–108.
    [41] C. Group, T.B. Count, T. Chromium, 中華民國 106 年 1 月 10 日行政院環境保護署環署毒字 第 1060000881 號令修正發布第三條、第四條、第五條, (n.d.).
    [42] L.K. Wang, Y.-T. Hung, N.K. Shammas, Physicochemical treatment processes, Springer, 2005.
    [43] J.W. Patterson, H.E. Allen, J.J. Scala, Carbonate precipitation for heavy metals pollutants, J. (Water Pollut. Control Fed. (1977) 2397–2410.
    [44] D. Kunii, O. Levenspiel, Fluidization engineering, Butterworth-Heinemann, 1991.
    [45] R. Aldaco, A. Garea, A. Irabien, Particle growth kinetics of calcium fluoride in a fluidized bed reactor, Chem. Eng. Sci. 62 (2007) 2958–2966.
    [46] P. Zhou, J.-C. Huang, A.W.F. Li, S. Wei, Heavy metal removal from wastewater in fluidized bed reactor, Water Res. 33 (1999) 1918–1924.
    [47] J.P. Chen, H. Yu, Lead removal from synthetic wastewater by crystallization in a fluidized‐bed reactor, J. Environ. Sci. Heal. Part A. 35 (2000) 817–835.
    [48] D. Guillard, A.E. Lewis, Nickel carbonate precipitation in a fluidized-bed reactor, Ind. Eng. Chem. Res. 40 (2001) 5564–5569.
    [49] A. Kozik, N. Hutnik, K. Piotrowski, A. Matynia, Continuous reaction crystallization of struvite from diluted aqueous solution of phosphate (V) ions in the presence of magnesium ions excess, Chem. Eng. Res. Des. 92 (2014) 481–490.
    [50] X. Luo, B. Guo, J. Luo, F. Deng, S. Zhang, S. Luo, J. Crittenden, Recovery of lithium from wastewater using development of li ion-imprinted polymers, ACS Sustain. Chem. Eng. 3 (2015) 460–467. https://doi.org/10.1021/sc500659h.
    [51] Q. Yan, X. Li, Z. Wang, X. Wu, J. Wang, H. Guo, Q. Hu, W. Peng, Extraction of lithium from lepidolite by sulfation roasting and water leaching, Int. J. Miner. Process. 110–111 (2012) 1–5. https://doi.org/10.1016/j.minpro.2012.03.005.
    [52] X. Guo, X. Cao, G. Huang, Q. Tian, H. Sun, Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling, J. Environ. Manage. 198 (2017) 84–89. https://doi.org/10.1016/j.jenvman.2017.04.062.
    [53] G.K. Morse, S.W. Brett, J.A. Guy, J.N. Lester, Phosphorus removal and recovery technologies, Sci. Total Environ. 212 (1998) 69–81.
    [54] C. Xiao, L. Zeng, Thermodynamic study on recovery of lithium using phosphate precipitation method, Hydrometallurgy. 178 (2018) 283–286. https://doi.org/10.1016/j.hydromet.2018.05.001.
    [55] W.J. Schipper, A. Klapwijk, B. Potjer, W.H. Rulkens, B.G. Temmink, F.D.G. Kiestra, A.C.M. LIMBACH, Phosphate recycling in the phosphorus industry, Phosphorus Res. Bull. 15 (2004) 47–51.
    [56] A. Dietze, U. Wiesmann, R. Gnirss, Phosphorus removal with membrane filtration for surface water treatment, Water Sci. Technol. Water Supply. 3 (2003) 23–30.
    [57] H. Huang, J. Liu, P. Zhang, D. Zhang, F. Gao, Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation, Chem. Eng. J. 307 (2017) 696–706.
    [58] A.E. Greenburg, G. Levin, W.J. Kauffman, Effect of phosphorus removal on the activated sludge process, Sewage Ind. Waste. 27 (1955) 277.
    [59] I. Stratful, S. Brett, M.B. Scrimshaw, J.N. Lester, Biological phosphorus removal, its role in phosphorus recycling, Environ. Technol. 20 (1999) 681–695.
    [60] K. Sakadevan, H.J. Bavor, Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems, Water Res. 32 (1998) 393–399.
    [61] A. Ugurlu, B. Salman, Phosphorus removal by fly ash, Environ. Int. 24 (1998) 911–918.
    [62] L. Zeng, X. Li, J. Liu, Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings, Water Res. 38 (2004) 1318–1326.
    [63] S. Tanada, M. Kabayama, N. Kawasaki, T. Sakiyama, T. Nakamura, M. Araki, T. Tamura, Removal of phosphate by aluminum oxide hydroxide, J. Colloid Interface Sci. 257 (2003) 135–140.
    [64] V. V Ranade, V.M. Bhandari, Industrial wastewater treatment, recycling and reuse, Butterworth-Heinemann, 2014.
    [65] R.L. Parfitt, R.J. Atkinson, R.S.C. Smart, The mechanism of phosphate fixation by iron oxides, Soil Sci. Soc. Am. J. 39 (1975) 837–841.
    [66] Y. Wang, Y. Yu, H. Li, C. Shen, Comparison study of phosphorus adsorption on different waste solids: Fly ash, red mud and ferric–alum water treatment residues, J. Environ. Sci. 50 (2016) 79–86.
    [67] C. Liu, Y. Li, Z. Luan, Z. Chen, Z. Zhang, Z. Jia, Adsorption removal of phosphate from aqueous solution by active red mud, J. Environ. Sci. 19 (2007) 1166–1170.
    [68] M. Zarrabi, M.M. Soori, M. Noori Sepehr, A. Amrane, S. Borji, H.R. Ghaffari, Removal of phosphorus by ion-exchange resins: Equilibrium, kinetic and thermodynamic studies, Environ. Eng. Manag. Journal,. (2014).
    [69] T. Nur, W.G. Shim, M.A.H. Johir, S. Vigneswaran, J. Kandasamy, Modelling of phosphorus removal by ion-exchange resin (Purolite FerrIX A33E) in fixed-bed column experiments, Desalin. Water Treat. 52 (2014) 784–790.
    [70] B.L. Turner, A.W. Cheesman, L.M. Condron, K. Reitzel, A.E. Richardson, Introduction to the special issue: developments in soil organic phosphorus cycling in natural and agricultural ecosystems, Geoderma. (2015).
    [71] C. Vohla, M. Kõiv, H.J. Bavor, F. Chazarenc, Ü. Mander, Filter materials for phosphorus removal from wastewater in treatment wetlands—A review, Ecol. Eng. 37 (2011) 70–89.
    [72] C.-S. Chen, Y.-J. Shih, Y.-H. Huang, Remediation of lead (Pb (II)) wastewater through recovery of lead carbonate in a fluidized-bed homogeneous crystallization (FBHC) system, Chem. Eng. J. 279 (2015) 120–128.
    [73] A. Myerson, Handbook of industrial crystallization, Butterworth-Heinemann, 2002.
    [74] K. Gramlich, J. Nývlt, O. Söhnel, M. Matuchova, M. Broul. The Kinetics of Industrial Crystallization. Elsevier Amsterdam—Oxford—New York—Tokyo 1985. Preis US $67.25, Dfl. 175.00. ISBN 0–444–99610–9, (1986).
    [75] M. Ohara, Modeling crystal growth rates from solution, Englewood Cliffs. (1973).
    [76] P.-C. Chen, G.Y. Cheng, M.H. Kou, P.Y. Shia, P.O. Chung, Nucleation and morphology of barium carbonate crystals in a semi-batch crystallizer, J. Cryst. Growth. 226 (2001) 458–472.
    [77] A.G. Jones, Crystallization process systems, Elsevier, 2002.
    [78] L.G. Gibilaro, Fluidization-Dynamics, Butterworth Heinemann, (2001).
    [79] S. Bristow, T. Shekunov, B.Y. Shekunov, P. York, Analysis of the supersaturation and precipitation process with supercritical CO2, J. Supercrit. Fluids. 21 (2001) 257–271. https://doi.org/10.1016/S0896-8446(01)00100-0.
    [80] S.K. Myasnikov, A.P. Chipryakova, N.N. Kulov, Kinetics, energy characteristics, and intensification of crystallization processes in chemical precipitation of hardness ions, Theor. Found. Chem. Eng. 47 (2013) 505–523.
    [81] R.L. Frost, A. López, F.L. Theiss, R. Scholz, L. Souza, The molecular structure of the phosphate mineral kidwellite NaFe93+ (PO4) 6 (OH) 11⋅ 3H2O–A vibrational spectroscopic study, J. Mol. Struct. 1074 (2014) 429–434.
    [82] R. Scholz, R.L. Frost, Y. Xi, L.M. Graça, L. Lagoeiro, A. López, Vibrational spectroscopic characterization of the phosphate mineral phosphophyllite–Zn2Fe (PO4) 2• 4H2O, from Hagendorf Süd, Germany and in comparison with other zinc phosphates, J. Mol. Struct. 1039 (2013) 22–27.
    [83] M. Klähn, G. Mathias, C. Kötting, M. Nonella, J. Schlitter, K. Gerwert, P. Tavan, IR spectra of phosphate ions in aqueous solution: predictions of a DFT/MM approach compared with observations, J. Phys. Chem. A. 108 (2004) 6186–6194.
    [84] R.L. Frost, R. Scholz, A. López, Y. Xi, A vibrational spectroscopic study of the phosphate mineral whiteite CaMn++ Mg2Al2 (PO4) 4 (OH) 2• 8 (H2O), Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 124 (2014) 243–248.
    [85] R.L. Frost, R. Scholz, F.M. Belotti, A. López, F.L. Theiss, A vibrational spectroscopic study of the phosphate mineral vantasselite Al4 (PO4) 3 (OH) 3• 9H2O, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 147 (2015) 185–192.
    [86] R.L. Frost, A. López, F.L. Theiss, G.M. Aarão, R. Scholz, A vibrational spectroscopic study of the phosphate mineral rimkorolgite (Mg, Mn2+) 5 (Ba, Sr)(PO4) 4• 8H2O from Kovdor massif, Kola Peninsula, Russia, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 132 (2014) 762–766.
    [87] R.L. Frost, A. López, F.L. Theiss, L.M. Graça, R. Scholz, A vibrational spectroscopic study of the silicate mineral lomonosovite Na5Ti2 (Si2O7)(PO4) O2, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 134 (2015) 53–57.
    [88] R.L. Frost, R. Scholz, A. López, C. Lana, Y. Xi, A Raman and infrared spectroscopic analysis of the phosphate mineral wardite NaAl3 (PO4) 2 (OH) 4⋅ 2 (H2O) from Brazil, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 126 (2014) 164–169.
    [89] K.D. Litasov, N.M. Podgornykh, Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite, J. Raman Spectrosc. 48 (2017) 1518–1527. https://doi.org/10.1002/jrs.5119.

    無法下載圖示 校內:2026-07-08公開
    校外:2026-07-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE