研究生: |
賴德倫 Lai, Te-Lun |
---|---|
論文名稱: |
新型疊接架構於燃料電池混合供電系統 A Novel Cascode Converter for Fuel Cell Hybrid System |
指導教授: |
陳建富
Chen, Jiann-Fun |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 燃料電池 、疊接式電力轉換器 、混合供電系統 |
外文關鍵詞: | Fuel cell, Cascoded converter, Hybrid system |
相關次數: | 點閱:144 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出疊接架構於燃料電池混合供電系統之應用,由於燃料電池無法提供瞬間能量轉換,所以利用電池串接放電改善燃料電池動態特性。電源疊接式結構透過非隔離式電力轉換器傳遞少部份能量,大部份能量直接傳送至輸出負載,以電壓補償之概念來提升系統之效率。在燃料電池的應用中,可由疊接架構之特性來補償燃料電池的極化損失,藉此調整燃料電池系統輸出電壓。疊接式混合電力轉換器之整體效率可高達92.65%,系統規格500 W。為了達到高電壓之輸出,延伸此高效率之雙向疊接式電力轉換器架構,以多層疊接之概念,提出三電源疊接混合供電系統。另外,提出雙迴路主動燃料電池電壓控制策略,來控制此三電源疊接系統,以達高效率的電能管理。
This thesis develops the cascoded configuration for fuel cell (FC) applications. Using the concepts of voltage compensation and voltage allocation, the performance and efficiency of an FC conversion system can be improved. Most energy is provided by FC directly. Part of energy of FC is to build the voltage of ultra-capacitor modules (UCM) and battery. When transition is happened, battery keeps voltage of UCM .Thus, FC polarization loss is decreased, so the efficiency is high. The overall efficiency of the proposed hybrid power system can achieve 92.65% and 500 W at full load. For high-voltage applications, a three-source cascoded system is presented by extending the high-efficiency cascoded bidirectional configuration and using the multi-level cascoded concept in this dissertation. Moreover, a two-loop active FC voltage control for the proposed system is presented to achieve highly efficient power management.
參考文獻
[1] 劉恆齊,綠色能源科技與減碳效益之選擇價值評估之研究,國立台北大學碩士論文,2010。
[2] 劉尉仕,燃料電池數位控制電力轉換器之研製,國立雲林科技大學碩士論文,民國93年6月。
[3] 黃鎮江,燃料電池,初版,全華科技圖書,民國92年。
[4] 詹偉鴻,質子交換模燃料電池(PEMFC)之電極模組(MEA)理論與分析,國立台灣大學機械工程研究所碩士論文,民國91年。
[5] 周宣任,質子交換膜燃料電池MEA之理論模擬與分析,國立中山大學碩士論文,民國91年6月。
[6] 邱賢昌,燃料電池能量轉換器之研製,國立雲林科技大學碩士論文,民國96年7月。
[7] S. Luo, “A Review of Distributed Power System Part I: DC Distributed Power System” IEEE Trans. Aerospace and Electron. System, vol 20, pp. 5-16, Aug. 2005.
[8] Y. Xi and P. K. Jain, “A Forward Converter Topology with Independently and Precisely Regulated Multiple Outputs,” IEEE Trans. Power Electron., vol. 18, no. 2, pp. 648-658, Mar. 2003.
[9] T. J. Liang, T. H. Ai and J. F. Chen, “Flyback-Forward Power Factor Correction Circuit with Line-Frequency Ripple Suppression,” IEE Proc, vol. 149, no. 6, pp. 474-480, Nov. 2002.
[10] J. J. Jozwik and M. K. Kazimierczuk, “Dual Sepic PWM Switching- Mode DC/DC Power Converter,” IEEE Trans. Industrial Electron., vol. 36, no. 1, pp. 64-70, Feb. 1989.
[11] J. P. Karst and K. Hoffmann, “Transductor Based High Speed Gate Drive,” in Proc. IEEE IECON 35th, 2004, pp. 100-104.
[12] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. 2nd Ed. John Wiley, New York, USA, 1950, pp. 39-60.
[13] J. N. Park and T. R. Zaloum, “A Dual Mode Forward/Flyback Converter,” in Proc. IEEE PESC Record, 1982, pp. 3-13.
[14] S. K. Changchien, T. J. Liang, J. F. Chen and L. S. Yang, “Novel High Step-up DC-DC Converter for Fuel Cell Energy Conversion System,” IEEE Trans. Ind. Electron., vol. 57, no. 6, 1-32, pp. 271-336. Jun. 2010.
[15] A. Khaligh, “Stability Criteria for the Energy Storage Bi-Directional DC/DC Converter in the Toyota Hybrid System II,” in Proc. IEEE VPPC, pp. 348-352 , Sept. 2007.
[16] R. J. Wai and R. Y. Duan, “High-Efficiency Power Conversion for Low Power Fuel Cell Generation System,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 847-856, Jul. 2005.
[17] J. E. Larminie and A. Dicks, Fuel Cell Systems Explained. Chichester, U.K. Wiley, 2000, pp.308.
[18] P. Famouri and R. S. Gemmen, “Electrochemical Circuit Model of a PEM Fuel Cell,” in Proc. IEEE Power Eng. Soc. General Meeting, pp. 1436-1440, 2003.
[19] J. M. Correa, F. A. Farret and J. R. Gomes, “Simulation of Fuel-Cell Stacks Using a Computer-Controlled Power Rectifier with the Purposes of Actual High-Power Injection Applications,” IEEE Trans. Industry Application, vol. 39, pp. 1136-1142, July/Aug. 2003.
[20] G. Fontes, C. Turpin , S. Astier and T. A. Meynard, “Interactions between Fuel Cells and Power Converters: Influence of Current Harmonics on a Fuel Cell Stack” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 670-678, March 2007.
[21] A. Khaligh, M. Rahimi, Y. J. Lee, J. Cao, A. Emadi, S. D. Andrews, C. R. Robinson and C. Finnerty, “Digital Control of an Isolated Active Hybrid Fuel Cell/Li-Ion Battery Power Supply,” IEEE Tran. Vehicular Technology, vol. 6, no. 2, pp. 3709-3721, Nov. 2007.
[22] A. Emadi, K. Rajashekara, S. S. Williamson and S. M. Lukic, “Topological Overview of Hybrid Electric and Fuel Cell Vehicular Power System Architectures and Configurations,” IEEE Trans. Vehicular Technology, vol. 54, pp.763-770, May. 2005.
[23] F. Z. Peng, M. Shen and K. Holland, “Application of Z-source Inverter for Traction Drive of Fuel Cell –Battery Hybrid Electric Vehicles” IEEE Trans. Power Electron., vol. 22, pp. 1054-1061, May. 2007.
[24] J. V. Mierlo, Y. Cheng, J. M. Timmermans and P. V. Bosschet, “Comparison of Fuel Cell Hybrid Propulsion Topology with Super-Capacitor,” in Proc. IEEE EPE-PEMC, 2006, pp. 501-505.
[25] F. Barbir, PEM fuel cells: theory and practice. San Diego: Elsevier Academic Press, 2005.
[26] E.C.W de Jong, I. W. Hofsajer and J. A. Ferreira, “A New Approach to Low Conversion Ratio DC-DC Converters,” in Proc. IEEE PESC 2002 vol. 2, pp. 431-436, Jun. 2002.
[27] Z. Jiang, L. Gao and R. A. Dougal, “Flexible multiobjective control of power converter in active hybrid fuel cell /battery power sources,” IEEE Tran. Power Electron., vol. 20, no. 1, pp. 244-253, Jan. 2005.
[28] 劉尉仕,應用於燃料電池系統之疊接行轉換器分析與設計,國立成功大學電機工程系博士論文,民國99年12月。
[29] W. S. Liu, J. F. Chen, T. J. Liang, R. L. Lin and C. H. Liu, “Analysis, Design, and Control of Bidirectional Cascoded Configuration for a Fuel Cell Hybrid Power System,” IEEE Trans. Power Electron., vol. 25, pp. 1565-1575, Jun. 2010.
[30] W. S. Liu, J. F. Chen, T. J. Liang and R. L. Lin, “'Multi-Cascoded Sources for a High Efficiency Fuel Cell Hybrid Power System in High Voltage Application,” IEEE Trans. Power Electron, vol. 26, no. 3, Mar. 2011.
[31] R. J. Wai and R. Y. Duan, “High-efficiency bidirectional converter for power sources with great voltage diversity,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1986-1996, Sept. 2007.
[32] M. Jain, M. Daniele and P. K. Jain “A bidirectional DC-DC converter topology for low power application,” IEEE Tran. Power Electron, vol.15, no. 4, pp. 595-606, Jul. 2000.