| 研究生: |
盧俊名 Lu, Chun-Ming |
|---|---|
| 論文名稱: |
提高亮度均勻性之Full HD主動式矩陣有機發光二極體畫素補償電路設計 New Pixel Circuit Design for Enhancing Uniformity of Luminance in Full HD AMOLED Displays |
| 指導教授: |
林志隆
Lin, Chih-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 主動式矩陣有機發光二極體 、薄膜電晶體 、畫素補償電路 、低溫多晶矽 、非晶相銦鎵鋅氧化物 |
| 外文關鍵詞: | Active-matrix organic light-emitting diode (AMOLED), Compensation pixel circuit, Thin-film transistor (TFT), Low-temperature polycrystalline-silicon (LTPS), Amorphous indium-gallium-zinc-oxide (a-IGZO) |
| 相關次數: | 點閱:133 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
主動式矩陣有機發光二極體顯示器被視為下一世代極具發展潛力的顯示技術,近年來主要應用於可攜式裝置上,並逐漸發展大尺寸家用顯示器市場。顯示器亮度由流經有機發光二極體的電流大小所決定,此電流藉由薄膜電晶體和儲存電容所構成的畫素電路控制。然而採用不同製程的薄膜電晶體會因為製程因素而發生電子特性變異,或者是因為長時間操作而導致臨界電壓漂移等問題,且有機發光二極體材料在長時間操作下會老化而導致臨界電壓上升和發光效率下降,以及電源線內阻效應導致電壓下降等,以上因素皆會造成顯示器亮度不均勻,降低顯示品質。
為了增加顯示品質,本論文提出五個新式畫素補償電路,前三個畫素電路採用具有較高載子移動率和穩定性的低溫多晶矽薄膜電晶體作為背板材料,然而其因為製程因素所導致的電子特性變異會造成顯示器亮度不均勻的現象。本論文第一個畫素補償電路其架構為2T1C,驅動方法為同步式發光因此可適用於3D顯示器,此電路能夠補償驅動薄膜電晶體臨界電壓變異,並且藉由模擬結果驗證在所有灰階範圍內的相對電流誤差率小於3.4%,因此能夠提高OLED電流和亮度的穩定性。雖然第一個畫素電路架構簡單,但是在同一行畫素的外部電路中需要有一組開關進行電源線和資料線切換,因此電路成本較高,應用在實際面板上的可行性較低。本論文第二個畫素補償電路其架構為3T2C,採用目前主流的漸進式發光驅動方法,並且能夠補償驅動薄膜電晶體的臨界電壓變異,電路操作皆由畫素電路內之元件進行,因此能夠降低整體電路成本。由模擬結果可知當驅動薄膜電晶體的臨界電壓變異±0.5 V時,本電路的OLED電流相對誤差率在所有灰階範圍內小於2.54%。由p型薄膜電晶體組成的畫素電路,其OLED電流除了受到驅動薄膜電晶體臨界電壓變異所影響,也會受到電源線內阻效應影響。有鑑於此,本論文第三個畫素補償電路同樣採用漸進式發光驅動方法,架構同樣為3T2C,藉由模擬結果可知此電路能夠同時補償低溫多晶矽薄膜電晶體的臨界電壓和載子移動率變異,也可以改善電源線內阻效應所造成的影響,在所有灰階範圍內其相對電流誤差率分別為2.44%、6.37%和0.89%,達到高亮度均勻性的目標。
接下來提出兩個採用n型非晶相銦鎵鋅氧化物薄膜電晶體作為背板材料的新式畫素補償電路,因為其具有比低溫多晶矽薄膜電晶體更均勻的元件電子特性、較低之漏電流及較低的製造成本,因此較適合應用於大尺寸AMOLED顯示器。這兩個畫素電路的操作皆使用電流補償電壓驅動式,皆能夠補償薄膜電晶體的臨界電壓漂移,並且OLED電流不受有機發光二極體臨界電壓上升影響。本論文第四個畫素補償電路其架構為5T1C,而本論文所提出的第五個畫素補償電路,其架構為更精簡的3T1C。由模擬結果可得知當驅動薄膜電晶體的臨界電壓漂移±0.5 V時,這兩個畫素電路的電流相對誤差率在所有灰階範圍內分別小於3.98%和0.61%,並且當有機發光二極體臨界電壓上升1 V時,這兩個畫素電路的電流相對誤差率在所有灰階範圍內分別小於3.82%和4.16%,也能夠達到高亮度均勻性的目標。
Active-matrix organic light-emitting diode displays have many advantages, such as wide-viewing angle, fast response time and excellent color reproducibility. This thesis presents five compensation pixel circuits for use in AMOLED displays to solve the issues including deviations of electrical characteristics of thin-film transistors, such as low-temperature polycrystalline-silicon, amorphous indium-gallium-zinc-oxide technology, and OLED degradation as well as power line I-R drop. The first circuit is utilized of simple 2T1C structure for use in 3D Full HD displays, and it compensates for threshold voltage variation. Howerver, the external swith circuit increases the system costs. Although the second circuit compensates for threshold voltage variation without external swith circuit, it suffers from VDD I-R drop. The third circuit compensates for not only threshold voltage variation but also VDD I-R drop and mobility variation. The previous three circuits are voltage programming LTPS pixel circuits, and the following two a-IGZO pixel circuits are operated with current-biased voltage-programming method. Although the fourth circuit compensates for threshold voltage shift of the driving TFT and the OLED with simple operation, the structure 5T1C is more complex. The last circuit with simple 3T1C structure can also compensate for threshold voltage shift of the driving TFT and the OLED, but the uniformity of luminance would be affected by parasitic resistance and capacitance of SCAN line signals.
[1] C. C. Wu, S. D. Theiss, G. Gu, M. H. Lu, J. C. Sturm, S. Wagner, and S. R. Forrest, “Integration of organic LEDs and amorphous Si TFT’s onto flexible and lightweight metal foil substrates,” IEEE Electron Device Lett., vol. 18, no. 12, pp. 609–612, Dec. 1997.
[2] R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson. C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., 1998, pp. 875–878.
[3] A. Nathan, G. R. Chaji, and S. J. Ashtiani, “Driving schemes for a-Si and LTPS AMOLED displays,” IEEE/OSA J. Display Technol., vol. 1, no. 2, pp. 267–277, Dec. 2005.
[4] C. C. Wu, C. W. Chen, C. L. Lin, and C. J. Yang, “Advanced organic light emitting devices for enhancing display performances, ” IEEE/OSA J. Display Technol., vol. 1, no. 2, pp. 248–266, Dec. 2005.
[5] J. S. Yoo, S. H. Jung, et al., “Highly flexible AM-OLED display with integrated gate driver using amorphous silicon TFT on ultrathin metal foil,” IEEE/OSA J. Display Technol., vol. 6, no. 11, pp. 565–570, Nov. 2010.
[6] C. W. Chien, C. H. Wu, et al., “High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates,” IEEE Trans. Electron Devices, vol. 58, no. 5, pp. 1440–1446, May 2011.
[7] E. H. Ma, W. E. Wei, H. Y. Li, J. C. M. Li, I. C. Cheng, and Y. H. Yeh, “Flexible TFT circuit analyzer considering process variation, aging, and bending effects, ” IEEE/OSA J. Display Technol., vol. 10, no. 1, pp. 19–26, Jan. 2014.
[8] T. Kawamura, M. Matsumura, T. Kaitoh, et al., “A model for predicting on-current degradation caused by drain-avalanche hot carriers in low-temperature polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 56, no. 1, pp. 109–115, Jan. 2009.
[9] Y. G. Mo, M. Kim, C. K. Kang, et al., “Amorphous oxide TFT backplane for large size AMOLED TVs,” in Proc. SID Tech. Dig., 2010, pp. 1037–1040.
[10] M. Kimura and S. Imai, “Degradation evaluation of α-IGZO TFTs for application to AM-OLEDs,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 963–965, Sep. 2010.
[11] D. Geng, D. H. Kang, M. J. Seok, M. Mativenga, and J. Jang, "High-speed and low-voltage-driven shift register with self-aligned coplanar a-IGZO TFTs", IEEE Electron Device Lett., vol. 33, no. 7, pp. 1012–1014, Jul. 2012.
[12] T. Tanabe, S. Amano, H. Miyake, et al., “New threshold voltage compensation pixel circuits in 13.5-inch quad full high definition OLED display of crystalline In-Ga-Zn-Oxide FETs,” in Proc. SID Tech. Dig., 2012, pp. 88–91.
[13] Y. Onoyama, J. Yamashita, H. Kitagawa, et al., “0.5-inch XGA micro-OLED display on a silicon backplane with high-definition technologies,” in Proc. SID Tech. Dig., 2012, pp. 950–953.
[14] Y. Kim, J. Kanicki, and H. Lee, “An a-InGaZnO TFT pixel circuit compensating threshold voltage and mobility variations in AMOLEDs, ” IEEE/OSA J. Display Technol., vol. 10, no. 5, pp. 402–406, Dec. 2014.
[15] C. L. Lin, C. C. Hung, P. S. Chen, P. C. Lai, and M. H. Cheng, “New voltage-programmed AMOLED pixel circuit to compensate for nonuniform electrical characteristics of LTPS TFTs and voltage drop in power line,” IEEE Trans. Electron Devices, vol. 61, no. 7, pp. 2454–2458, Jul. 2014.
[16] S. Yujuan, Z. Yi, C. Xinfa, and L. Shiyong, “A simple and effective ac pixel driving circuit for active matrix OLED,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 1137–1140, Apr. 2003.
[17] S. H. Jung, W. J. Nam, and M. K. Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Lett., vol. 25, no. 10, pp. 690–692, Oct. 2004.
[18] Y. C. Lin and H. P. D. Shieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett., vol. 25, no. 11, pp. 728-730, Nov. 2004.
[19] Y. H. Tai, B. T. Chen, Y. J. Kuo, C. C. Tsai, K. Y. Chiang, Y. J. Wei, and H. C. Cheng, “A new pixel circuit for driving organic light emitting diodes with low temperature polycrystalline thin film transistors,” IEEE/OSA J. Display Technol., vol. 1, no. 1, pp. 100–104, Sep. 2005.
[20] J. H. Lee, J. H. Kim, and M. K. Han, “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED,” IEEE Electron Device Lett., vol. 26, no. 12, pp. 897–899, Dec. 2005.
[21] H. Y. Lu, P. T. Liu, T. C. Chang, and S. Chi, “Enhancement of brightness uniformity by a new voltage-modulated pixel design for AMOLED displays,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 743–745, Sep. 2006.
[22] C. L. Lin and Y. C. Chen, “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 2, pp. 129–131, Feb. 2007.
[23] S. J. Ashtiani, G. R. Chaji, and A. Nathan, “AMOLED pixel circuit with electronic compensation of luminance degradation,” IEEE/OSA J. Display Technol., vol. 3, no. 1, pp. 36–39, Mar. 2007.
[24] C. L. Lin and T. T. Tsai, “A novel voltage driving method using 3-TFT pixel circuit for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 6, pp. 489–491, Jun. 2007.
[25] S. Ono, K. Miwa, Y. Maekawa, and T. Tsujimura, “VT compensation circuit for AM OLED displays composed of two TFTs and one capacitor,” IEEE Trans. Electron Devices, vol. 54, no. 3, pp. 462–467, Mar. 2007.
[26] H. Y. Lu, T. T. Chang, Y. H. Tai, P. T. Liu, and S. Chi, “A new pixel circuit compensating for brightness variation in large size and high resolution AMOLED displays,” IEEE/OSA J. Display Technol., vol. 3, no. 4, pp. 398–403, Dec. 2007.
[27] C. L. Lin, T. T. Tsai, and Y. C. Chen, “A novel voltage-feedback pixel circuit for AMOLED display,” IEEE/OSA J. Display Technol., vol. 4, no. 1, pp. 54–60, Mar. 2008.
[28] W. J. Wu, L. Zhou, R. H. Yao, and J. B. Peng, “A new voltage-programmed pixel circuit for enhancing the uniformity of AMOLED displays,” IEEE Electron Device Lett., vol. 32, no. 7, pp. 931–933, Jul. 2011.
[29] C. L. Lin, K. W. Chou, C. C. Hung, and C. D. Tu, “Lifetime amelioration for an AMOLED pixel circuit by using a novel ac driving scheme,” IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2652–2659, Aug. 2011.
[30] C. L. Lin, W. Y. Chang, C. C. Hung, et al., “LTPS-TFT pixel circuit to compensate for OLED luminance degradation in three-dimensional AMOLED display,” IEEE Electron Device Lett., vol. 33, no. 5, pp. 700–702, May 2012.
[31] H. J. In and O. K. Kwon, “A simple pixel structure using polycrystalline-silicon thin-film transistors for high-resolution active-matrix organic light-emitting diode displays,” IEEE Electron Device Lett., vol. 33, no. 7, pp. 1018–1020, Jul. 2012.
[32] C. L. Lin, C. C. Hung, W. Y. Chang, M. H. Cheng, P. Y. Kuo, and Y. C. Chen, “Voltage driving scheme using three TFTs and one capacitor for active-matrix organic light-emitting diode pixel circuits,” IEEE/OSA J. Display Technol., vol. 8, no. 10, pp. 602–608, Oct. 2012.
[33] C. L. Lin, C. C. Hung, P. Y. Kuo, and M. H. Cheng, “New LTPS pixel circuit with AC driving method to reduce OLED degradation for 3D AMOLED displays, ” IEEE/OSA J. Display Technol., vol. 8, no. 12, pp. 681–683, Dec. 2012.
[34] C. L. Lin, W. Y. Chang, and C. C. Hung, “Compensating pixel circuit driving AMOLED display with a-IGZO TFTs,” IEEE Electron Device Lett., vol. 34, no. 9, pp. 1166–1168, Sep. 2013.
[35] J. H. Lee, W. J. Nam, S. H. Jung, and M. K. Han, “A new current scaling pixel circuit for AMOLED,” IEEE Electron Device Lett., vol. 25, no. 5, pp. 280–282, May 2004.
[36] Y. C. Lin, H. P. D. Shieh, and J. Kanicki, “A novel current scaling a-Si:H TFTs pixel electrode circuit for AM-OLEDs,” IEEE Trans. Electron Devices, vol. 52, no. 6, pp. 1123–1131, Jun. 2005.
[37] S. J. Ashtiani, P. Servati, D. Striakhilev, and A. Nathan, “A 3-TFT current -programmed pixel circuit for AMOLEDs,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp.1514–1518, Jul. 2005.
[38] R. Chaji and A. Nathan, “A sub-μA fast-settling current-programmed pixel circuit for AMOLED displays,” in Proc. IEEE 33rd ESSCIRC, pp. 344–347, Sep. 2007.
[39] R. G. Stewart, “A fast 2-transistor current-mode AMOLED pixel,” J. Soc. Inf. Display, vol. 19, no. 7, pp. 503–512, Jul. 2011.
[40] S. Alexander, P. Servati, G. R. Chaji, et al., “Pixel circuits and drive schemes for glass and elastic AMOLED displays,” J. Soc. Inf. Display, vol. 13, no. 7, pp. 587–595, Jul. 2005.
[41] C. Leng, L. Wang, and S. Zhang, “Two-Transistor Current-Biased Voltage -Programmed AM-OLED Pixel,” IEEE Electron Device Lett., vol. 34, no. 10, pp. 1262–1264, Oct. 2013.
[42] G. R. Chaji, C. Ng, A. Nathan, A. Werner, J. Birnstock, O. Schneider, and J. B. Nimoth, “Electrical compensation of OLED luminance degradation,” IEEE Electron Device Lett., vol. 28, no. 12, pp. 1108–1110, Dec. 2007.
[43] H. J. In and O. K. Kwon, “External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays,” IEEE Electron Device Lett., vol. 30, no. 4, pp. 377–379, Apr. 2009.
[44] C. L. Lin, K. W. Chou, C. C. Hung, and K. C. Liao, “Reducing OLED degradation using self-compensated circuit for AMOLED displays,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1403–1405, Oct. 2011.
[45] T. Kohno, H. Kageyama, M. Miyamoto, M. Ishii, N. Kasai, N. Nakamura, and H. Akimoto, “High-speed programming architecture and image-sticking cancellation technology for high-resolution low-voltage AMOLEDs,” IEEE Trans. Electron Devices, vol. 58, no. 10, pp. 3444–3452, Oct. 2011.
[46] C. L. Lin, C. C. Hung, W. Y. Chang, K. W. Chou, and C. Y. Chuang, “Novel a-Si:H AMOLED pixel circuit to ameliorate OLED luminance degradation by external detection,” IEEE Electron Device Lett., vol. 32, no.12, pp. 1716–1718, Dec. 2011.
[47] K. Y. Lee, Y. P. Hsu, P. C. P. Chao, and W. D. Chen, “A new compensation method for emission degradation in an AMOLED didsplay via an external algorithm, new pixel circuit, and models of prior measurements, ” IEEE/OSA J. Display Technol., vol. 10, no. 3, pp. 189–197, Mar. 2014.
[48] H. Akimoto, H. Kageyama, Y. Shimizu, and H. Awakura, “An innovative pixel-driving scheme for 64-level gray-scale full-color active matrix OLED displays,” in Proc. SID Tech. Dig., 2002, pp. 972–975.
[49] H. Kageyama, H. Akimoto, Y. Shimizu, T. Ouchi, N. Kasai, H. Awakura, N. Tokuda, K. Kajiyama, and T. Sato, “Two TFT pixel circuit with non-uniformity suppress-function for voltage programming active matrix OLED displays,” in Proc. SID Tech. Dig., 2005, pp. 1550–1553.
[50] M. Kimura, D. Suzuki, M. Koike, S. Sawamura, and M. Kato, “Pulsewidth modulation with current uniformization for AM-OLEDs,” IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2624–2630, Oct. 2010.
[51] D. W. Park, C. K. Kang, Y. Park, B. Chung, K. H. Chung, B. H. Kim, and S. S. Kim, “High-speed AMOLED pixel circuit and driving scheme,” in Proc. SID Tech. Dig., 2010, pp. 806–809.
[52] B. W. Lee, I. H. Ji, S. M. Han, S. D. Sung, K. S. Shin, J. D. Lee, B. H. Kim, B. H. Berkeley, and S. S. Kim, “Novel simultaneous emission driving scheme for crosstalk-free 3D AMOLED TV,” in Proc. SID Tech. Dig., 2010, pp. 758–761.
[53] C. L. Lin, W. Y. Chang, C. C. Hung, and C. D. Tu, “LTPS-TFT pixel circuit to compensate for OLED luminance degradation in three-dimensional AMOLED display,” IEEE Electron Device Lett., vol. 33, no. 5, pp. 700–702, May 2012.
校內:2019-08-18公開