簡易檢索 / 詳目顯示

研究生: 陳彥儒
Chen, Yan-Ru
論文名稱: 具快速功率轉換功能之高轉換比雙向直流-直流轉換器研製
Study and Implementation of High Conversion Ratio Bidirectional DC-DC Converter with Fast Power Transition
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 70
中文關鍵詞: 高轉換比雙向轉換器耦合電感能量換向
外文關鍵詞: high conversion ratio, bidirectional converter, coupled-inductor, power transition
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種高轉換比雙向直流-直流轉換器,此轉換器使用耦合電感與切換式電容來實現高轉換比。此外,本文討論了使轉換器可於數個工作週期內完成功率轉換之方法,並分析轉換器之工作原理與穩態特性,最後實作一24V/400V,功率400W之電路,進一步驗證本文中提到的轉換器的可行性。升壓模式的最高效率為92.1%,降壓模式為93.9%,並且模式轉態可於400μs內完成,而此種轉換器可以應用於儲能系統之電池與直流匯流排中。

    In this thesis, a high conversion ratio bidirectional DC-DC converter that uses coupled-inductors and switching-capacitor to achieve a high conversion ratio is proposed. In addition, the power transition method is discussed, which can complete power transition in several duty cycles, and analyze the operating principle and steady state. Finally, a 24V/400V, power 400W circuit is implemented to verify the feasibility of the converter mentioned in this thesis. The highest efficiency is 92.1% in step-up mode, step-down mode is 93.9%, and the power transition can be transferred less than 400 μs. This converter is suitable for the batteries and DC bus in energy storage system.

    摘要 I Abstract II Acknowledgement III Content IV List of Table VI List of Figure VII CHAPTER 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Thesis Outline 3 CHAPTER 2 REVIEW OF TOPOLOGIES 4 2.1 Isolated Converter 4 2.1.1 Bidirectional flyback DC-DC converter 4 2.1.2 Bidirectional half-bridge-push-pull DC-DC converter 7 2.1.3 Bidirectional full-bridge-push-pull DC-DC converter 8 2.1.4 Forward-flyback hybrid bidirectional DC-DC converter 10 2.2 Non-isolated Converter 11 2.2.1 Single-stage bidirectional DC-DC converter 11 2.2.2 Single-stage cascaded bidirectional DC-DC converter 12 2.2.3 Single-stage cascoded bidirectional DC-DC converter 14 2.2.4 Bidirectional DC-DC converter with coupled-inductor 15 2.2.5 Cascaded bidirectional DC-DC converter with coupled-inductor 17 2.2.6 Cascoded bidirectional DC-DC converter with coupled-inductor 18 2.3 Summary 19 CHAPTER 3 ANALYSIS OF PROPOSED CONVERTER 20 3.1 Structure of Circuit 20 3.2 Step-up Mode 22 3.2.1 Analysis of step-up mode 22 3.2.2 Derivation of Voltage Conversion Ratio 28 3.2.3 Boundary operating condition in step-up mode 30 3.3 Step-down Mode 32 3.3.1 Analysis of step-down mode 32 3.3.2 Derivation of Voltage Conversion Ratio 38 3.3.3 Boundary operating condition in step-up mode 40 3.4 Analysis of fast power transition 42 3.4.1 Step-up mode to step-down mode 43 3.4.2 Step-down mode to step-up mode 44 CHAPTER 4 ANALYSIS AND DISCUSSION OF EXPERIMENTAL RESULTS 45 4.1 System structure and specification 45 4.2 Design of coupled-inductor 46 4.3 Design of capacitors 47 4.4 Design of switching component 50 4.5 Experimental results and discussion 51 4.5.1 Experimental setups 51 4.5.2 Experimental results of step-up mode 54 4.5.3 Experimental results of step-down mode 58 4.5.4 Experimental waveforms of fast power transition 62 CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 66 5.1 Conclusions 66 5.2 Future Works 66 REFERENCES 67

    [1]. K. Daychosawang and Y. Kumsuwan, “Balanced and Unbalanced Three-Phase Voltage Sag Generator for Testing Electrical Equipment”, in 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2014.
    [2]. C. Tu, Q. Guo, F. Jiang, C. Chen, X. Li, F. Xiao, and J. Gao, “Dynamic Voltage Restorer With an Improved Strategy to Voltage Sag Compensation and Energy Self-Recovery”, in Transactions on Power Electronics and Applications, 2019.
    [3]. B. Kroposki, D. Mooney, T. Markel, and B. Lundstrom, “Energy Systems Integration Facilities at the National Renewable Energy Laboratory”, in IEEE Energytech, 2012.
    [4]. Z. Zhang, Y. Zhang, Q. Huang, and W. J. Lee, “Market-Oriented Optimal Dispatching Strategy for a Wind Farm with a Multiple Stage Hybrid Energy Storage System”, in CSEE Journal of Power and Energy Systems, 2018.
    [5]. M. H. Nehrir, C. Wang, K. Strunz, H. Aki, R. Ramakumar, J. Bing, Z. Miao, and Z. Salameh, “A Review of Hybrid Renewable/Alternative Energy Systems for Electric Power Generation: Configurations, Control, and Applications”, in IEEE Transactions on Sustainable Energy, 2011.
    [6]. X. Gong, R. Xiong, and C. C. Mi, “Study of the Characteristics of Battery Packs in Electric Vehicles With Parallel-Connected Lithium-Ion Battery Cells”, in IEEE Transactions on Industry Applications, 2014.
    [7]. E. Koutroulis and K. Kalaitzakis, “Novel Battery Charging Regulation System for Photovoltaic Applications”, in IEE Proceedings - Electric Power Applications, 2004.
    [8]. M. A. Hannan and M. M. Hoque, “State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations”, in IEEE Access, 2018.
    [9]. G. Pandey and N. R. T, “Power Flow Study of Grid Connected Bidirectional WPT Systems for EV Application”, in IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy, 2020.
    [10]. S. Ishii, H. Hara, T. Higuchi, and T. Kawachi, “Bidirectional DC-AC Conversion Topology Using Matrix Converter Technique”, in The 2010 International Power Electronics Conference, 2010.
    [11]. P. Thummala, D. Maksimovic, Z. Zhang, and M. A. E. Andersen, “Digital Control of a High-Voltage (2.5 kV) Bidirectional DC-DC Flyback Converter for Driving a Capacitive Incremental Actuator”, in IEEE Transactions on Power Electronics, 2016.
    [12]. G. Chen, Y. Lee, S. Hui, D. Xu, and Y. Wang, “Actively Clamped Bidirectional Flyback Converter”, in IEEE Transation on Inducstrial Electronics, 2000.
    [13]. N. M. Mukhtar and D. D. C. Lu, “A Bidirectional Flyback Converter with Cross-Coupled Non-Dissipative Snubber Circuits”, in IEEE International Telecommunications Energy Conference, 2017.
    [14]. S. M. Chen, T. J. Liang, and Y. H. Huang, “A Isolated Bidirectional Interleaved Flyback Converter for Battery Backup System Application”, in IEEE International Symposium on Circuits and Systems, 2013.
    [15]. F. Xue, R. Yu, and A. Q. Huang, “Loss Analysis of a High Efficiency GaN and Si Device Mixed Isolated Bidirectional DC-DC Converter”, in IEEE Applied Power Electronics Conference and Exposition, 2016.
    [16]. B. R. Lin, C. L. Huang, and Y. E. Lee, “Asymmetrical Pulse-Width Modulation Bidirectional DC–DC Converter”, in IET Power Electronic, 2008.
    [17]. M. Ye, P. Xu, and Y. E. Lee, “Investigation of Topology Candidates for 48 V VRM”, in Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition, 2008.
    [18]. J. Sebastián, M. M. Hernando, P. J. Villegas, J. Díaz, and A. Fontán, “A New Input Current Shaping Technique Using Converters Operating in Continuous Conduction Mode”, in Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition, 1998.
    [19]. J. Sebastián, A. Fernández, P. J. Villegas, M. M. Hernando, and J. M. Lopera. “Improved Active Input Current Shapers For Converters With Symmetrically Driven Transformer”, in IEEE Transactions on Industry Applications, 2001.
    [20]. T. Qian, W. Song, and B. Lehman, “Self-Driven Synchronous Rectification Scheme for Wide Range Application of DC/DC Converters with Symmetrically Driven Transformers”, in IEEE Power Electronics Specialists Conference, 2006.
    [21]. G. Chen, Y. Deng, H. Peng, X. He, and Y. Wang, “An Optimized Modulation Method for Full Bridge/Push-Pull Bi-directional DC-DC Converter with Wide-Range ZVS and Reduced Spike Voltage”, in 40th Annual Conference of the IEEE Industrial Electronics Society, 2015.
    [22]. K. Yamamoto, E. Hiraki, T. Tanaka, M. Nakaoka, and T. Mishima, “Bidirectional DC–DC Converter with Full-Bridge/Push-Pull Circuit for Automobile Electric Power Systems”, in 37th IEEE Power Electronics Specialists Conference, 2006.
    [23]. F. Zhang and Y. Yan, “Novel Forward–Flyback Hybrid Bidirectional DC–DC Converter”, in IEEE Transactions on Industrial Electronics, 2009.
    [24]. Y. Chang, S. Tseng, T. Wu, and H. Yang, “Narrow Pulsed Electric Field Generator Using Forward/Flyback Hybrid Converters for Liquid Food Processing”, in IEEE International Conference on Sustainable Energy Technologies, 2008.
    [25]. F. Zhang, L. Xiao, and Y. Yan, “Bi-directional Forward-Flyback DC-DC Converter”, in IEEE 35th Annual Power Electronics Specialists Conference, 2004.
    [26]. H. Chen, X. Wang, and A. Khaligh, “A Single Stage Integrated Bidirectional AC/DC and DC/DC Converter for Plug-In Hybrid Electric Vehicles”, in IEEE Vehicle Power and Propulsion, 2011.
    [27]. B. V. Kumar, R. K. Singh, and R. Mahanty, “A Modified Non-Isolated Bidirectional DC-DC Converter for EV/HEV's Traction Drive Systems”, in IEEE International Conference on Power Electronics, Drives and Energy Systems, 2016.
    [28]. Y. P. Chan, K. H. Loo, and Y. M. Lai, “SVM-Plus-Phase-Shift Modulation Strategy for Single-Stage Immittance-Based Three-Phase AC-DC Bidirectional Converter”, in 19th European Conference on Power Electronics and Applications, 2017.
    [29]. B. R. Lin, J. J. Chen, and F. Y. Hsieh, “Analysis and Implementation of a Bidirectional Converter with High Conversion Ratio”, in IEEE International Conference on Industrial Technology, 2008.
    [30]. L. S. Yang and T. J. Liang, “Analysis and Implementation of a Novel Bidirectional DC–DC Converter”, in IEEE Transactions on Industrial Electronics, 2012.
    [31]. J. H. Yi, P. Jang, S. W. Kang, and B. H. Cho, “Soft-Switching Synchronous Interleaved Boost Converter with an Auxiliary Coupled Inductor”, in IEEE 8th International Power Electronics and Motion Control Conference, 2016.
    [32]. T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, “Boost Converter with Coupled Inductors and Buck–Boost Type of Active Clamp”, in IEEE Transactions on Industrial Electronics, 2008.
    [33]. M. Chorishiya and D. K. Palwalia, “Analysis of Interleaved Coupled Inductor Ultra-Boost Converter for Solar PV Applications”, in 2nd International Conference on Power Energy, Environment and Intelligent Control, 2019.
    [34]. S. Sakhavati and E. Babaei, “Coupled Inductor Based Boost DC/DC Converter”, in 7th Power Electronics and Drive Systems Technologies Conference, 2016.
    [35]. H. H. Liang, T. J. Liang, K. H. Chen, and S. M. Chen, “Analysis and Implementation of a Bidirectional Double-Boost DC-DC Converter”, in IEEE 10th International Conference on Power Electronics and Drive Systems, 2013.
    [36]. R. J. Wai, R. Y. Duan,and K. H. Jheng, “High-Efficiency Bidirectional DC-DC Converter with High-Voltage Gain”, in IET Power Electronics, 2012.
    [37]. L. Jiang, X. Zhang, C. Yin, C. Mi, S. Li,and M. Zhang, “A Novel Soft-Switching Bidirectional DC-DC Converter with Coupled Inductors”, in Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, 2013.
    [38]. H. Wu, K. Sun, L. Chen, L. Zhu,and Y. Xing, “High Step-Up/Step-Down Soft-Switching Bidirectional DC–DC Converter with Coupled-Inductor and Voltage Matching Control for Energy Storage Systems”, in IEEE Transactions on Industrial Electronics, 2016.
    [39]. S. Sakhavati and E. Babaei, “Coupled Inductor Based Boost DC/DC Converter”, in 7th Power Electronics, Drive Systems & Technologies Conference, 2016.
    [40]. W. C. Liao, T. J. Liang, H. H. Liang, H. K. Liao, L. S. Yang, K. C. Juang, and J. F. Chen, “Study and Implementation of a Novel Bidirectional DC-DC Converter with High Conversion Ratio”, in IEEE Energy Conversion Congress and Exposition, 2011.
    [41]. H. Bahrami, S. Farhangi, H. Iman-Eini,and E. Adib, “A New Interleaved Coupled-Inductor Nonisolated Soft-Switching Bidirectional DC–DC Converter With High Voltage Gain Ratio”, in IEEE Transactions on Industrial Electronics, 2018.

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE