| 研究生: |
趙一安 Chao, Yi-An |
|---|---|
| 論文名稱: |
具動態元件匹配及輸出阻抗校正機制之12位元100MHz數位類比轉換器 A 12-bit 100MHz DAC with Dynamic Element Matching and Output Impedance Calibration |
| 指導教授: |
郭泰豪
Kuo, Tai-Haur |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 數位類比轉換器 、動態元件匹配 、輸出阻抗校正 |
| 外文關鍵詞: | DAC, DEM, OIC |
| 相關次數: | 點閱:81 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電流式數位類比轉換器可以推動額外的負載並且使用於高速應用。近年來,許多數位類比轉換器實現於先進製程,特別是130奈米、90奈米製程。然而,就成本的考量而言,晶片面積越小越好。本論文將實現低成本高速高解析數位類比轉換器,並提出新的動態元件匹配演算法,該演算法可以抵抗電流源的不匹配誤差。並驗正動態元件匹配效應及改善電流緣不匹配所造成的非線性效應。為了得到較小的面積,本論文採用輸出阻抗校正機制以及動態元件匹配演算法,尤其是先進製程的應用。然而,本論文也採用歸零機制搭配輸出阻抗校正機制以改善高頻輸入訊號時的效能。
此外,我們也以90nm製程實現了一個12位元數位類比轉換器,可在1.2V電壓下達到1.4V差動輸出擺幅的數位類比轉換器,且得到較小核心面積。整體電路操做頻率為100MS/s。在低頻時,SFDR改善後為76.18dB;在高頻時則改善為70.19dB。其核心面積為0.06mm2。
Current-steering DAC can drive external loads, and usually used in high speed application. In recent years, many digital-to-analog converters have been implemented in advanced process, especially in 130nm, 90nm, and CMOS process. However, as far as the cost is concerned, the area of chip is getting as smaller as possible. In this thesis, a low-cost high resolution and high speed DAC is implemented. A new Dynamic Element Matching (DEM) algorithm is proposed. This algorithm can resist the mismatch error of current source. The effect of Dynamic Element Matching is verified and improves the non-linear effect caused by mismatch of current source. DEM algorithm and Output Impedance Calibration (OIC) are taken to get a smaller area of DAC, especially in advance process. However, the performance at high input frequency can be improved by OIC and return-to-zero.
Besides, a 12-bit DAC is physically implemented in 90nm CMOS process. It has ultra-wide output swing of 1.4-Vpp under 1.2V supply voltage and small area for active area. The SFDR of DAC using proposed DEM and OIC achieves 76.18dB in low input frequency and 70.19dB at Nyquist bandwidth with operating frequency of 100MS/s. The active area is 0.06mm2.
[1] Chi-Hung Lin, Frank M. L. van der Goes, Jan R. Westra, Jan Mulder, Yu Lin, Erol Arslan, Emre Ayranci, Xiaodong Liu,and Klaas Bult, “A 12 bit 2.9GS/s DAC with IM3< -60dBc Beyond 1GHz in 65nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3285-3293, Dec. 2009.
[2] G. A. M. Van der Plas, J. Vandenbussche, W. Sansen, M. S. J. Steyaert and G. G. E. Gielen, “A 14-bit intrinsic accuracy Q2 random walk CMOS DAC,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1708-1718, Dec. 1999.
[3] H. H. Chen, J. Lee, J. Weiner, Y. K. Chen and J. T. Chen, “A 14-b 150MS/s CMOS DAC with digital background calibration,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2006, pp. 51-52.
[4] Yonghua Cong and Randall L. Geiger, “A 1.5-V 14-Bit 100-MS/s Self-Calibration DAC,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2051-2060, Dec. 2003.
[5] Y. H. Lin, D. H. Lee, C. C. Yang and T. H. Kuo, “High-speed DACs with random multiple data-weighted averaging algorithm,” in Proc. IEEE ISCAS, May 2003, pp. I-993-I-996.
[6] Kok Lim Chan and Ian Galton, “A 14b 100MS/s DAC with Fully Segmented Dynamic Element Matching,” IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp. 2390-2399.
[7] Tao Chen and Georges G. E. Gielen, “The Analysis and Improvement of a Current-Steering DACs Dynamic SFDR—I: The Cell-Dependent Delay Differences,” IEEE Trans. Circuits Syst. I, vol. 53, no. 1, pp. 3-15, Jan. 2006.
[8] Tao Chen and Georges Gielen, “The Analysis and Improvement of a Current-Steering DACs Dynamic SFDR—II: The Output-Dependent Delay Differences,” IEEE Trans. Circuits Syst. II, vol. 54, no. 2, pp. 268-279, Feb. 2007.
[9] A A. Van den Bosch, M. A. F. Borremans, M. S. J. Steyaert and W. Sansen, “A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 315-324, March 2001.
[10] Chi-Hung Lin and Klaas Bult, “A 10-b, 500-MSample/s CMOS DAC in 0.6mm2”, IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1948-1958, Dec 1998.
[11] M. J. M. Pelgrom, A. C. J. Duinmaijer and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433-1439, Oct. 1989.
[12] A. Van den Bosch, M. Steyaert and W. Sansen, “An accurate statistical yield model for CMOS current-steering D/A converters,” in Proc. IEEE ISCAS, May 2000, pp. 105-108.
[13] A. van den Bosch, M. Steyaert and W. Sansen, “SFDR-Bandwidth Limitations for High Speed High Resolution Current Steering CMOS D/A Converters”, Proceeding of ICECS, vol. 3, pp. 1193-1196, Sept. 1999.
[14] Jose Bastos, Augusto M. Marques, Michel S. J. Steyaert and Willy Sansen, “A 12-bit Intrinsic Accuracy HighSpeed CMOS DAC,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1959-1969, Dec. 1998.
[15] M. Tiilikainen, “A 14-bit 1.8-V 20-mW 1-mm2 CMOS DAC,” IEEE J. Solid-State Circuits, vol. 36, no. 7, pp. 1144-1147, July 2001.
[16] G. I. Radulov, P. J. Quinn, J. A. Hegt and A. H. M. van Roermund, “A start-up calibration method for generic current-steering D/A converters with optimal area solution,” in Proc. IEEE ISCAS, May 2005, pp.788-791.
[17] Martin Clara, Wolfgang Klatzer, Berthold Seger, Antonio Di Giandomenico andLuca Gori, “A 1.5V 200MS/s 13b 25mW DAC with Randomized Nested Background Calibration in 0.13μm CMOS,” IEEE ISSCC Dig. Tech. Papers, Feb. 2007, pp. 250-600.
[18] Qiuting Huang, Pier Andrea Francese, Chiara Martelli and Jannik Nielsen, “A 200MS/s 14b 97mW DAC in 0.18μm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2004, pp. 364-365.
[19] Alex R. Rugeja and Bang-Sup Song, “A Self-Trimming 14-b 100-MS/s CMOS DAC,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1841-1852, Dec. 2000.
[20] Takahiro Miki, Yasuyuki Nakamura, Masao Nakaya, Sotoju Asai, Yoichi Akasaka and Yasutaka Horiba, “An 80-MHz 8-bit CMOS D/A Converter,” IEEE J. Solid-State Circuits, vol. sc-21, no. 6, pp. 983-988, Dec. 1986.
[21] Kevin O’Sullivan, Chris Gorman, Michael Hennessy and Vincent Callaghan, “A 12-bit 320-MSample/s Current-Steering CMOS D/A Converter in 0.44mm2,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1064-1072, July 2004.
[22] Alex R. Bugeja, Bang-Sup Song, Patrick L. Rakers and Steven F. Gilling, “A 14-b, 100-MS/s CMOS DAC Designed for Spectral Performance,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1719-1732, Dec. 1999.
[23] S. Luschas and H. –S. Lee, “Output Impedance Requirements for DACs,” in Proc. IEEE ISCAS, May 2003, pp. I-861-I-864.
[24] Dongwon Seo and Gene H. McAllister, “A Low-Spurious Low-Power 12-bit 160-MS/s DAC in 90-nm CMOS for Baseband Wireless Transmitter,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 486-495, March 2007.
[25] Rudy van de Plassche, “CMOS Integrated Analog-to-Digital and Digital-to-Analog
Converters, 2nd Edition”, Kluwer Academic Publishers, CA, U.S.A. pp. 51-96, 2003.
[26] David A. Johns and Ken Martin, “Analog Integrated Circuit Design,” John Wiley &
Sons, Inc., New York, chapter 11-chapter 12, 1997.
[27] Hiroshi Takakura, Masashige Yokoyama and Akira Yamaguchi, “A 10 bit 80MHz Glitchless CMOS D/A Converter,” in Proc. IEEE CICC, May. 1991, pp. 26.5/1-26.5/4.
[28] Mark I. Montrose, “EMC and The Printed Circuit Board”, IEEE PRESS, New York, chapter 8, 1999.
[29] Evaluation Board AD9744 datasheet, Analog Devices, 2005.
[30] Douglas A Mercer, “Low-Power Approaches to High-Speed Current-Steering Digital-to-Analog Converters in 0.18um CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1688-1698, August 2007.
[31] Chi-Hung Lin, Frank M.L. van der Goes, Jan R. Westra, Jan Mulder, Yu Lin, Erol Arslan, Emre Ayranci, Xiaodong Liu, and Klass Bult, “A 12 bit 2.9GS/s DAC With IM3<-60dBc Beyond 1GHz in 65nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3285-3293, December 2009.
[32] Xu Wu, Pieter Palmers, Michiel S.J. Steyaert, “A 130nm CMOS 6-bit Full Nyquist 3GS/s DAC,” IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2396-2403, November 2008.