簡易檢索 / 詳目顯示

研究生: 楊博全
Yang, Po-Chuan
論文名稱: 適用於具有內部連結之一類未知大尺度資料取樣非線性系統且具有閉迴路解藕特性的分散式模型化線性觀測器與軌跡追蹤器設計
Modeling of Decentralized Linear Observer and Tracker for a Class of Unknown Interconnected Large-Scale Sampled-Data Nonlinear System with Closed-Loop Decoupling Property
指導教授: 蔡聖鴻
Tsai, Sheng-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 83
中文關鍵詞: 軌跡追蹤器數位再設計觀測器/卡爾曼濾波器鑑別大尺度資料取樣系統觀測器
外文關鍵詞: digital redesign, observer/Kalman filter identification, large-scale system, tracker, Observer
相關次數: 點閱:107下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種適用於一類具有內部連結之未知大尺度資料取樣非線性系統且具有閉迴路解藕特性的分散式模型化線性觀測器與軌跡追蹤器設計方法。首先利用離線的觀測器/卡爾曼濾波器鑑別方法計算出資料取樣非線性系統之適當階數(或低階)的分散式線性觀測器。然後此鑑別出來的觀測器可以進一步地以數位再設計方法來改善。接下來並提出一個具有高增益特性的分散式數位再設計之軌跡追蹤器設計方法,因此此閉迴路系統具有解藕的特性。所提出來的方法對於這種複雜的大尺度資料取樣系統不論其系統方程式為未知或已知皆相當簡單及有效。

    Low-order modeling of decentralized linear observer and tracker for a class of unknown interconnected large-scale sampled-data nonlinear system with close-loop decoupling property is proposed in this thesis. First, the appropriate (low-) order decentralized linear observer for the sampled-data nonlinear system is determined by the off-line observer/Kalman filter identification (OKID) method. Then, the above observer has been further improved based on the digital redesign approach. Sequentially, the decentralized digital-redesign tracker with the high gain property is proposed, so that the closed-loop system has the decoupling property. The proposed approach is quite simple and effective for the complicate interconnected large-scale sampled-data system with know or unknown system.

    中文摘要 Ⅰ Abstract Ⅱ List of Contents Ⅲ List of Figures Ⅳ Chapter 1. Introduction 1-1 2. Problem description 2-1 3. Observer/Kalman Filter Identification 3-1 3.1 Basic observer equation 3-2 3.2 Computation of observer Markov parameters 3-6 3.2.1 System Markov Parameters 3-6 3.2.2 Observer Gain Markov Parameters 3-7 3.3 Eigensystem realization algorithm 3-8 3.4 Relationship to Kalman filter 3-11 4. The Prediction-Based Digital Redesign 4-1 4.1 Linear quadratic analog tracker design 4-2 4.2 Observer-based linear quadratic analog tracker design 4-3 4.3 Digital redesign of the linear quadratic analog tracker 4-5 4.4 Digital redesign of the observer-based linear quadratic analog tracker 4-6 5. Design Procedure 5-1 6. Illustrative Examples 6-1 6.1 A MIMO large-scale unknown linear system 6-1 6.2 A MIMO large-scale unknown nonlinear system 6-15 7. Conclusion 7-1 References R-1

    [1] H. S. Wu, “Decentralized robust control for a class of large-scale interconnected systems with uncertainties,” International Journal of System Science, vol. 20, no. 12, pp. 2597-2608, 1989.
    [2] M. Jamshidi, Largescale System: Modeling and Control, New York: Elserier Science Publishing, 1983.
    [3] E. J. Davison, “The robust decentralized control of servomechanism problem for composite system with input-output interconnection,” IEEE Transactions on Automatic Control, AC-24, no. 2, pp. 325-327, Apr. 1979.
    [4] P. A. Ioannou and J. Sun, Robust Adaptive Control, New Jersey: Prentice Hall, 1996.
    [5] D. T. Gavel and D. D. Seljuk, “Decentralized adaptive control: structural conditions for stability,” IEEE Transactions on Automatic Control, AC 34, pp. 413-426, 1989.
    [6] L. Shi and S. K. Singh, “Decentralized adaptive controller design of large-scale systems with higher order interconnections,” IEEE Transactions on Automatic Control, AC 37, pp. 1106-1118, 1992.
    [7] R. Ortega and A. Herrera, “A solution to the decentralized adaptive stabilization problem,” Systems and Control Letters, vol. 20, pp. 299-306, 1993.
    [8] A. Datta, “Performance improvement in decentralized adaptive control: A modified model reference scheme,” IEEE Transactions on Automatic Control, vol. 38, no.11, pp. 1717-1722, 1993.
    [9] Y. H. Chen, G. Leitmann, and Z. K. Xiong, “Robust control design for interconnected systems with time-varying uncertainties,” International Journal of Control, vol. 54, pp. 1119-1124, 1991.
    [10] C. Wen, “Direct decentralized adaptive control of interconnected systems having arbitrary subsystem relative degrees,” in Proceedings of the 33rd conference on Decision and Control, Lake Buena Vista, FL, pp. 1187-1192, Dec 14. - Dec 16. 1994.
    [11] C. Wen, “Indirect robust totally decentralized adaptive control of continuous-time interconnected systems,” IEEE Trans on Automatic Control, AC 38, no. 6, pp. 1122-1126, June 1995.
    [12] K. Ikeda and S. Shin, “Fault tolerant decentralized control systems using backstepping,” in Proceedings of the 33rd conference on Decision and Control, New Orleans, LA, pp. 2340-2345, Dec 14. - Dec 16. 1995.
    [13] P. R. Pagilla, “Robust decentralized control of large-scale interconnected systems: General interconnections,” in Proceedings of American Control Conference, San Diego, CA, pp. 4527-4531, June 2. - June 4. 1999.
    [14] O. Huseyin, M. E. Sezer, and D. D. Siljak, “Robust decentralized control using output feedback,” IEE Proceedings, vol. 129, pp. 310-314, 1982.
    [15] A. Datta and P. A. Ioannou, “Decentralized indirect adaptive control of interconnected systems,” International Journal of Adaptive Control and Signal Processing, vol. 5, no. 4, pp. 259-281, 1991.
    [16] K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems, Upper Saddle River, New Jersey: Prentice-Hall, 1989.
    [17] K. S. Narendra and N. O. Oleng’, “Exact output tracking in decentralized adaptive control systems,” Center for Systems Science, Yale University, New Haven, CT, Tech. Rep. 0104, 2001.
    [18] J. N. Juang, Applied System Identification, Englewood Cliffs. NJ, Prentice-Hall, 1994.
    [19] S. M. Guo, L. S. Shieh, G. Chen, and C.F. Lin, ”Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transaction on Circuits and Systems-I, Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, Nov. 2000.
    [20] M. Phan, L. G. Horta, J. N. Juang, and R. W. Longman, “LinearSystem Identification Via an Asymptotically Stable Observer,” Journal of Optimization Theory and Applications, vol. 79, no. 1, pp. 59-86, October 1993.
    [21] C. Kuo, Digital Control System, New York: Holt, Rinehart and Winston, 1980.
    [22] J. W. Sunkel, L. S. Shieh, and J. L. Zhang, “Digital redesign of an optimal momentum management controller for the space station,” AIAA, Journal of Guidance, Control, Dynamics, vol. 14, no. 4, pp. 712-723, 1991.
    [23] T. Yokoyama, K. Kosuge, and K. Furuta, “Digital redesign of robot control,” Industrial Electronics Society, IECON '89, 15th Annual Conference of IEEE, Philadelphia, Penn, vol. 2, pp. 409-414, Nov 6. -Nov 10. 1989.
    [24] J. Xu, G. Chen, and L.S. Shieh, “Digital redesign for controlling chaotic Chua’s circuit,” IEEE Transactions on Aerospace and Electronic Systems, vol. 32, no. 4, pp. 1488-1499, 1996.
    [25] L. S. Shieh, W. M. Wang, J. Bain, and J. Chandra, “Design of lifted dual-rate digital controllers for X-38 vechicle,” AIAA, Journal of Guidance, Control, Dynamics, vol. 23, no. 4, pp. 629-639, 2000.
    [26] H. J. Lee, J. B. Park, and Y. H. Joo, “An efficient observer-based sampled-data control : digital redesign approach,” IEEE Transaction Circuits and Systems-I, Fundamental Theory and Applications, vol. 50, no. 12, pp. 1595-1601, December 2003.
    [27] S. H. Tsai, T. H. Chien, S. M. Guo, Y. P. Chang, and L. S. Shieh, “State-space self-tuning control for stochastic fractional-order chaotic systems,” IEEE Transaction Circuits and Systems-I, vol. 54, no. 3, pp. 632-642, March 2007.
    [28] Y. C. Chang, “Robust tracking control for nonlinear MIMO systems via fuzzy approaches,” Automatica, vol. 36, no. 10, pp. 1535-1545, 2000.

    下載圖示 校內:2010-06-26公開
    校外:2012-06-26公開
    QR CODE