簡易檢索 / 詳目顯示

研究生: 張仁銓
Chang, Ren-Chuan
論文名稱: 非含鉛鈮酸鈉鉀陶瓷與氧化鋅薄膜之特性及其在表面聲波元件之應用
Characterizations of (Na0.5K0.5)NbO3 Based Lead-free Ceramics and ZnO Thin Films and Their Applications on SAW Devices
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 204
中文關鍵詞: 拉福波感測器濺鍍鈮酸鈉鉀氧化鋅
外文關鍵詞: NKN, Love wave, sensor, Sputter, ZnO
相關次數: 點閱:73下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈮酸鈉鉀((NayK1-y)NbO3)是一種具有取代含鉛壓電陶瓷吸引力的材料;因為它的高機電耦合係數和高轉相溫度,所以被廣泛地研究。本文中,以常用的氧化物混合法製備掺雜鈦酸鍶(SrTiO3)和鈦酸鈣(CaTiO3)之非含鉛鈮酸鈉鉀陶瓷。以X光繞射、掃瞄式電子顯微鏡、和原子力顯微鏡加以分析,並研究介電、壓電與鐵電特性。根據結果顯示,鈦酸鍶和鈦酸鈣能有效防止陶瓷體水解與改善其電特性。最後,成功研製出以此非含鉛材料為主體之表面聲波元件。此外,我們也有系統地研究掺雜量0.5莫耳濃度的鈦酸鍶和鈦酸鈣之鈮酸鈉鉀在不同燒結溫度下之特性;結果顯示,適當的燒結溫度可以有效改善陶瓷的密度和電特性。
    拉福波元件因為其高靈敏度,所以非常適用於液體和氣體的感測。我們嘗試在不同的沉積條件下,將氧化鋅薄膜成長在鉭酸鋰(36 YX LiTaO3)基板上;根據氧氣氦氣比、射頻能量、沉積壓力和退火溫度分析其特性,其結晶構造、應力、表面粗糙度等特性也一併研究。更進一步地,研究以氧化鋅/石英(4245´ ST-cut quartz)、氧化鋅/鉭酸鋰、氧化鋅/鈮酸鋰(64 YX-LiNbO3)為構造的拉福波元件之相速度、頻率溫度係數(TCF)、機電耦合係數(k2)和靈敏度。鎂掺雜對氧化鋅薄膜結晶構造的影響和對拉福波感測器的特性也被加以探討;適當的鎂掺雜能形成粗糙的表面以提升感測器靈敏度。
    最後研究在掺雜鈦酸鍶之鈮酸鈉鉀陶瓷基板上成長氧化鋅薄膜。藉由射頻磁控濺鍍法,成功地成長具有c軸(002)優選取向的氧化薄膜於鈮酸鈉鉀陶瓷基板上。再研究成長上的氧化鋅薄對於鈮酸鈉鉀陶瓷之表面聲波特性,如:相速度、頻率溫度係數、機電耦合係數有何影響。

    Sodium potassium niobate ((NayK1-y)NbO3, NKN) ceramic is an attractive material replacing Pb-based piezoelectric ceramics. It has been thoroughly investigated due to its high k2 and high phase transition temperature. Lead-free (Na0.5K0.5)NbO3 ceramics doped with SrTiO3 (ST) and CaTiO3 (CT) (0-3 mol%) have been prepared by the conventional mixed oxide method in this research. The samples are characterized by X-ray diffraction analysis, scanning electron microscopy, and atomic force microscopy measurements. The dielectric, piezoelectric and ferroelectric properties are also investigated. Our results show that the addition of SrTiO3 and CaTiO3 are very effective in preventing the deliquescence and in improving the electric properties. Finally, SAW devices based on lead-free ceramics have been successfully fabricated. Besides, we have focused on the preparation of 0.5 mol% ST and CT doped NKN ceramics at different sintering temperatures, and systematically investigated their properties. The results present that the optimum sintering temperature is effective in improving the density and electric properties.
    Love-mode devices are very promising for liquid and gas media sensing applications because of high sensitivity. An experimental study of the structures based on ZnO guiding layer and 36 LiTaO3 substrate with different sputtering conditions to deposit ZnO films is presented. The deposited films were characterized as a function of argon-oxygen gas flow ratio, RF power, deposition pressure, and annealing temperature. Crystalline structures, stress, and surface roughness characteristics of the films were investigated. Further, the phase velocity, temperature coefficient of frequency, electromechanical coupling coefficient and sensitivity of Love-mode devices based on ZnO/IDT/36 YX-LiTaO3, ZnO/IDT/4245´ ST-cut quartz and ZnO/IDT/64 YX-LiNbO3 are presented. The influence of Mg dopants on the crystalline structures of ZnO thin films and the properties of Love wave sensors has also been studied. The appropriate addition of Mg dopant will produce a rough surface to raise the sensitivity.
    A study of the structure based on the ZnO layers and NKN-ST ceramic substrates with different sputtering conditions to deposit ZnO films is presented. Poly-crystal ZnO films with c-axis (002) orientation have been successfully grown on the NKN-ST ceramic substrates by RF magnetron sputtering technique. Based on previous SAW fabrication of NKN-ST ceramics, the effects of the ZnO films on the SAW device properties with a ZnO/IDT/NKN-ST structure, such as phase velocity, k2 and TCF, were investigated.

    Chapter 1 Introduction 1 Chapter 2 Theory and Literature Review 6 2.1 Structure of piezoceramics 6 2.1.1 Perovskite-type structure 6 2.1.2 Domain structure 7 2.1.3 Piezoelectric resonator 7 2.2 Sodium potassium niobate 8 2.3 Ferroelectrics 10 2.4 Bulk and surface acoustic wave 11 2.4.1 Piezoelectric interactions 11 2.4.2 Rayleigh wave considerations 12 2.5 Surface skimming bulk wave piezoelectric cuts 13 2.6 Love wave 14 2.7 Structure of surface acoustic wave device 15 2.8 Cross-field model 16 Chapter 3 Fabrication and Measurement Setups in (Na, K)NbO3 Ceramics, ZnO Films and Devices 17 3.1 Preparation of (Na0.5K0.5)NbO3 samples 17 3.2 RF sputtering system 18 3.3 Deposition of ZnO films 20 3.4 Postdeposition annealing 21 3.5 Measurements of microstructure properties 21 3.5.1 Bulk density analysis 21 3.5.2 X-ray analysis 21 3.5.3 Grain size analysis 22 3.5.4 Stress analysis 22 3.5.5 Raman scattering spectra analysis 24 3.5.6 SEM and AFM analysis 25 3.6 Measurements of electrical properties 25 3.6.1 Dielectric constant 25 3.6.2 The Curie temperature 25 3.6.3 Electromechanical coupling factor 26 3.6.4 Frequency constant 26 3.6.5 Mechanical quality factor 27 3.6.6 Temperature coefficient of frequency 27 3.6.7 Ferroelectric hystersis loops 27 3.7 Measurements of SAW properties 28 3.7.1 Phase velocity 28 3.7.2 Electromechanical coupling coefficient 29 3.7.3 Temperature coefficient of frequency 29 3.8 Measurements of Love wave sensor properties 29 Chapter 4 Characterizations of (Na0.5K0.5)NbO3 Based Lead-free Ceramics 31 4.1 Effects of SrTiO3 dopant 31 4.1.1 Microstructure analysis 31 4.1.2 Analysis of electrical properties 32 4.1.3 Characteristics of surface acoustic wave devices 35 4.2 Effects of sintering temperature on SrTiO3 doped ceramics 36 4.2.1 Microstructure analysis 36 4.2.2 Analysis of electrical properties 37 4.3 Effects of CaTiO3 dopant 39 4.3.1 Microstructure analysis 40 4.3.2 Analysis of electrical properties 41 4.3.3 Characteristics of surface acoustic wave devices 44 4.4 Effects of sintering temperature on CaTiO3 doped ceramics 45 4.4.1 Microstructure analysis 46 4.4.2 Analysis of electrical properties 47 Chapter 5 Love Wave Devices in ZnO/Quartz, ZnO/LiTaO3, ZnO/LiNbO3 Structures 50 5.1 Deposition of preferred-orientation ZnO films on the LiTaO3 substrates 50 5.1.1 Effect of the oxygen-argon gas flow ratio 50 5.1.2 Effect of the ZnO films growths with RF power 51 5.1.3 Effect of the sputtering pressure 53 5.1.4 Effect of annealing temperature on the ZnO films growths 54 5.1.5 Fabrication of Love wave device 57 5.2 Love wave devices in ZnO/Quartz and ZnO/LiTaO3 structures 57 5.2.1 XRD analysis 58 5.2.2 Analysis of surface morphology 60 5.2.3 Love wave device characteristics 61 5.3 The influence of Mg doped ZnO thin films 63 5.3.1 XRD analysis 64 5.3.2 Analysis of surface morphology 65 5.3.3 Love wave device characteristics 65 5.4 Love wave devices based on ZnO:Mg/LiNbO3 structure 67 5.4.1 XRD analysis 68 5.4.2 Analysis of surface morphology 69 5.4.3 Love wave device characteristics 70 Chapter 6 The Effects of ZnO Films Deposited on the Lead-free Ceramic Substrates 73 6.1 Deposition of preferred-orientation ZnO films 73 6.1.1 Effect of the oxygen-argon gas flow ratio 73 6.1.2 Effect of the ZnO films growths with RF power 75 6.1.3 Effect of the sputtering pressure 75 6.1.4 Effect of deposition time 76 6.2 Analysis of surface morphology 77 6.3 Characteristics of surface acoustic wave device 78 Chapter 7 Summary and Recommendations for Future Work 80 7.1 Summary 80 7.2 Suggestions for future work 83 References 198 Appendix 203

    [1] B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectirc Ceramics, Academic Press, New York, (1971) 50,185.
    [2] S.Y. Chu, T.Y. Chen, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51 (2004) 663.
    [3] S.Y. Chu, T.Y. Chen, I.T. Tsai, W. Water, Sens. Actuator A-Phys. 113 (2004) 198.
    [4] G. Shirane, R. Newnham, R. Pepinsky, Phys. Rev. 96 (1954) 581.
    [5] V. Lingwal, B.S. Semwal, N.S. Panwar, Bull. Mat. Sci. 26 (2003) 619.
    [6] H. Birol, D. Damjanovic, N. Setter, J. European Ceram. Soc. 26 (2006) 861.
    [7] Y. Guo, K. Kakimoto, H. Ohsato, Solid State Commun. 129 (2004) 279.
    [8] S.Y. Chu, W. Water, Y.D. Juang, J.T. Liaw, S.B. Dai, Ferroelectrics 297 (2003) 11.
    [9] M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Jpn. J. Appl. Phys. 44 (2005) 6136.
    [10] S. Tashiro, H. Nagamatsu, K. Nagata, Jpn. J. Appl. Phys. 41 (2002) 7113.
    [11] R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Y. Akimune, N. Hirosaki, M. Itoh, Jpn. J. Appl. Phys. 41 (2002) 7119.
    [12] S.H. Park, C.W. Ahn, S. Nahm, J.S. Song, Jpn. J. Appl. Phys. 43 (2004) L1072.
    [13] M. Kosec, V. Bobnar, M. Hrovat, J. Bernard, B. Malic, J. Holc, J. Mater. Res. 19 (2004) 1849.
    [14] V. Bobnar, J. Bernard, M. Kosec, Appl. Phys. Lett. 85 (2004) 994.
    [15] Y. Guo, K. Kakimoto, H. Ohsato, Jpn. J. Appl. Phys. 43 (2004) 6662.
    [16] Y. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85 (2004) 4121.
    [17] Y. Guo, K. Kakimoto, H. Ohsato, Mater. Lett. 59 (2005) 241.
    [18] B. Malic, J. Bernard, J. Holc, D. Jenko, M. Kosec, J. European Ceram. Soc. 25 (2005) 2707.
    [19] Y. Chang, Z. Yang, X. Chao, R. Zhang, X. Li, Mater. Lett. 61 (2007) 785.
    [20] Frans C.M. Van De Pol, Ceram. Bull. 69 (1990) 1959.
    [21] Y. Natsume, H. Sakata, Thin Solid Films 372 (2000) 30.
    [22] S. Takada, J. Appl. Phys. 73 (1993) 4739.
    [23] R. Ondo-Ndong, G. Ferblantier, M. Kalfioui, A. Boyer, A. Foucaran, J. Cryst. Growth 255 (2003) 130.
    [24] S. Deiter, H. Witek, N. Oleynik, J. Bläsing, A. Dadgar, A. Krost, Z. Kristallogr. 219 (2004) 187.
    [25] W. Water, S.Y. Chu, Mater. Lett. 55 (2002) 67.
    [26] M. Ylilammi, J. Ella, M. Partanen, J. Kaitila, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49 (2002) 535.
    [27] P. Wu, N.W. Emanetoqlu, X. Tonq, Y. Lu, IEEE Ultrason. Symposium (2001) 211.
    [28] J.E. Lefebvre, T. Gryba, V.Y. Zhanq, IEEE Ultrason. Symposium (2001) 261.
    [29] K. Kalantar-zadeh, A. Trinchi, W. Wlodarski, A. Holland, Sens. Actuator A-Phys. 100 (2002) 135.
    [30] S.H. Seo, W.C. Shin, J.S. Park, Thin Solid Films 416 (2002) 190.
    [31] M. H. Lee, S. M. Chanq, C. K. Park, J. B. Lee, J. S. Park, Proceedings of the Annual IEEE International Freq. Control Symposium (2002) 70.
    [32] I.T. Tang, Y.C. Wang, W.C. Hwang, C.C. Hwang, N.C. Wu, M.P. Houng, Y.H. Wang, J. Cryst. Growth 252 (2003) 190.
    [33] F. Herrmann, M. Weihnacht, S. Bűttgenbach, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48 (2001) 268.
    [34] K. Nakamura, H. Hitazume, Y. Kawamura, IEEE Ultrason. Symposium (1999) 637.
    [35] J. Hechner, T. Wrόbel, European Frequency Time Forum, IEEE Conf., Mar. 5-7, 1996.
    [36] W.P. Jakubik, M.W. Urbańczyk, S. Kochowski, J. Bodzenta, Sens. Actuator B-Chem. 82 (2002) 265.
    [37] A. Talbi, F. Sarry, M. Elhakiki, L. Le Brizoual, O. Elmazria, P. Nicolay, P. Alnot, Sens. Actuator A-Phys. 128 (2006) 78.
    [38] J. Du, G.L. Harding, J.A. Ogilvy, P.R. Dencher, M. Lake, Sens. Actuator A-Phys. 56 (1996) 211.
    [39] O. Tamarin, C. Déjous, D. Rebiére, J. Pistré, S. Comeau, D. Moynet, J. Bezian, Sens. Actuator B-Chem. 91 (2003) 275.
    [40] B. Jakoby, M.J. Vellekoop, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 (1998) 1293.
    [41] K. Kalantar-zadeh, Y.Y. Chen, B.N. Fry, A. Trinchi, W. Wlodarski, IEEE Ultrason. Symposium (2001) 353.
    [42] B. Jakoby, M.J. Vellekoop, Sens. Actuator A-Phys. 68 (1998) 275.
    [43] D.A. Powell, K. Kalantar-zadeh, S. Ippolito, W. Wlodarski, IEEE Ultrason. Symposium (2002) 493.
    [44] T. Shoji, K. Nakamura, D. Yamazaki, IEEE Ultrason. Symposium (2001) 215.
    [45] F.S. Hickernell, H.D. Knuth, R.C. Dablemont, T.S. Hickernell, IEEE Ultrason. Symposium (1995) 345.
    [46] S.J. Ippolito, S. Kandasamy, K. Kalantar-zadeh, A. Trinchi, W. Wlodarski, Sensor Lett. 1 (2003) 33.
    [47] F. Bender, R.W. Cernosek, F. Josse, Electronics Lett. 36 (2000) 19.
    [48] R.C. Chang, S.Y. Chu, C.S. Hong, Y.T. Chuang, Surf. Coat. Technol. 200 (2006) 3235.
    [49] S.J. Jian, S.Y. Chu, T.Y. Hung, W. Water, J. Vac. Sci. Technol. A 22 (2004) 2424.
    [50] C.K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications, Academic Press, New York, 1998.
    [51] S.Y. Chu, W. Water, J.T. Liaw, Ultrason. 41 (2003) 133.
    [52] W. Kanzig, Ferroelectrics and Antiferroelectrics, Academic Press, (1957).
    [53] D.W. Dye, Proc. Phys. Soc. 38 (1926) 399.
    [54] S. Butterworth, Phys. Soc. 27 (1915) 410.
    [55] K.S.V. Dyke, Proc. IRE, 16 (1928) 742.
    [56] IEEE Standard on Piezoelectricity, New York, 176 (1978) 42.
    [57] K. Uchino, Ferroelectric Devices, Marcel Dekker, Inc., New York, (2000) 3.
    [58] K. Othmon, Ferroelectrics, Encyclopedia of Chemical Technology 3rd ed., v.10.
    [59] Z. Wang, J.D.N. Cheeke, C.K. Jen, Appl. Phys. Lett. 64 (1994) 2940.
    [60] R. S. Krishnan, R. Strinivasan, S. Devanarayanan, Thermal Expansion of crystals (Pergamon, Oxford, 1979).
    [61] J. Ye, S. Gu, S. Zhu, T. Chen, W. Liu, F. Qin, L. Hu, R. Zhang, Y. Shi, Y. Zheng, J. Vac. Sci. Technol. A 21 (2003) 979.
    [62] J.H. Jou, M.Y. Han, D.J. Cheng, J. Appl. Phys. 71 (1992) 4333.
    [63] V. Gupta, A. Mansingh, J. Appl. Phys. 80 (1996) 1063.
    [64] K. Kakimoto, K. Akao, Y. Guo, H. Ohsato, Jpn. J. Appl. Phys. 44 (2005) 7064.
    [65] J.T. Last, Phys. Rev. 105 (1957) 1740.
    [66] C.B. Sawyer, C.H. Tower, Phys. Rev. 35 (1930) 269.
    [67] F. Herrmann, M. Weihnacht, S. B¨uttgenbach, Ultrason. 37 (1999) 335.
    [68] C.C. Tseng, J. Appl. Phys. 38 (1967) 4281.
    [69] S.Y. Chu, W. Water, Y.D. Juang, J.T. Liaw, S.B. Dai, Ferroelectrics 287 (2003) 23.
    [70] S.Y. Chu, T.Y. Chen, Sens. Actuator A-Phys. 116 (2004) 10.
    [71] S.Y. Chu, T.Y. Chen, J. European Ceram. Soc. 24 (2004) 1993.
    [72] T.Y. Chen, S.Y. Chu, Y.D. Juang, Sens. Actuator A-Phys. 102 (2002) 6.
    [73] A. Chandra, R. Ranjan, D.P. Singh, N. Khare, D. Pandey, J. Phys.-Condens. Matter 18 (2006) 2977.
    [74] K.B. Sundaram, A. Khan, Thin Solid Films 295 (1997) 87.
    [75] M. Kadota, Jpn. J. Phys. 36 (1997) 3076.
    [76] S. Fujihara, C. Sasaki, T. Kimura, J. European Ceram. Soc. 21 (2001) 2109.
    [77] N.B. Chen, C.H. Sui, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 126 (2006) 16.
    [78] S. Kumar, V. Gupte, K. Sreenivas, J. Phys.-Condes. Matter 18 (2006) 3343.
    [79] K. Koike, K. Hama, Ippei Nakashima, G.Y. Takada, K.I. Ogata, S. Sasa, M. Inoue, M. Yano, J. Cryst. Growth 278 (2005) 288.
    [80] W. Water, Y.S. Yang, Sens. Actuator A-Phys. 127 (2006) 360.
    [81] W. Water, Y.S. Yang, Integr. Ferroelectr. 72 (2005) 13.
    [82] F. Chaabouni, M. Abaab, B. Rezig, Mater. Sci. Eng. B 109 (2004) 236.
    [83] D.K. Hwang, M.C. Jeong, J.M. Myoung, Appl. Surf. Sci. 225 (2004) 217.
    [84] K. Nakamura, T. Hanaoka, Jpn. J. Appl. Phys. 32 (1993) 2333.
    [85] R.C. Chang, S.Y. Chu, C.S. Hong, Y.T. Chuang, Thin Solid Films 498 (2006) 146.
    [86] S.Y. Chu, T.Y. Chen, W. Water, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 (2005) 2308.
    [87] R.C. Chang, S.Y. Chu, Y.P. Wong, Y.F. Lin, C.S. Hong, Sens. Actuator A-Phys. 136 (2007) 267.
    [88] B.A. Auld, Acoustic fields and waves in solids, v.1&2, Krieger (1990).

    下載圖示 校內:2008-07-01公開
    校外:2010-07-01公開
    QR CODE