簡易檢索 / 詳目顯示

研究生: 朱振慶
Chu, Chen-Ching
論文名稱: BCTZ非核殼結構鎳電極積層陶瓷電容開發
Development of non-core-shell (Ba,Ca)(Ti,Zr)O3 base MLCC with Ni electrodes
指導教授: 李文熙
Lee, Wen-Hsi
共同指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 43
中文關鍵詞: 抑制燒結積層陶瓷電容
外文關鍵詞: constraining sintering, MLCC
相關次數: 點閱:105下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用BCTZ為主要材料,以MLCC BME產品製程來備製其樣本,並以BaTiO3為抑制層,利用其積層的結構來將加入其樣品外層,使其燒結時抑制BCTZ的X&Y的方向收縮及晶粒成長,進而得到高介電常數及良好的溫度常數。
    此外,引用快速燒結的方式,使其在燒結過程中更能有效抑制內電極層的收縮,來得到更佳的內電極連續性,以得到更高的電容值。
    實驗結果發現,抑制層的加入於MLCC的結構中,能有效的抑制其BCTZ的收縮,且晶粒大小也同時被抑制住。 導入快速燒結的方式更能獲得更加的內電極連續性,且同時對於抑制燒結後的樣品外觀,有相當大的改善。

    Based on BCTZ by MLCC BME process, using BaTiO3 as constraining layers, to add constraining layers on the samples to control grain growth, and then to get the good dielectric constant and TCC.
    Besides, apply rapid sintering concept to resist inner electrode shrinkage during sintering. Depending on this concept, expect to get good continuity of inner electrode to gain higher capacitance.
    According to results, containing layers added can be useful to control grain growth of BCTZ. At the same time, rapid sintering performs good continuity of inner electrode and good outliner of sample by constraining sintering.

    摘要.......................................................I Abstact...................................................II 致謝.....................................................III 目錄......................................................IV 表目錄....................................................VI 圖目錄...................................................VII 第一章 緒論................................................01 1-1 前言..................................................01 1-2 研究目的...............................................01 第二章 理論基礎與文獻.......................................02 2-1 積層陶瓷電容器MLCC)理論.................................02 2-2 鈦酸鋇晶體結構及介電性質.................................12 2-3 抑制燒結機制...........................................19 2-4 快速燒結理論...........................................22 第三章 實驗方法及步驟.......................................25 3-1 實驗與參數設定.........................................25 3-2 樣品製備流程...........................................25 3-3 特性分析...............................................25 第四章 結果與討論...........................................29 4-1 電容值探討.............................................28 4-1-1 電極連續性(有效面積A).................................29 4-1-2 介電層厚度(d)........................................29 4-1-3 介電常數(K)..........................................33 4-2 介電損失探討...........................................35 4-3 絕緣電阻探討...........................................35 第五章 結論................................................38 參考文獻...................................................40 表目錄 Table.2-1 第二類電容器的EIA規格表...........................08 Table.3-1 實驗參數設計.....................................28 Table.3-2 特性分析明細.....................................28 圖目錄 Fig.2-1 Structure of Capacitor............................03 Fig.2-2 Structure of Multi-Layer Ceramic Capacitor........03 Fig.2-3 NPO、X7R及Y5V積層陶瓷電容之特性圖 [22]...............09 Fig.2-4 積層陶瓷電容 (MLCC) 製造流程示意圖 [23]..............13 Fig.2-5 Configuration of the BaTiO3 perovskite unit cell for.[24]..................................................13 Fig.2-6 Distortion of BaTiO3 unit cell in its polymorphic forms.[25]................................................14 Fig. 2-7 The temperature dependence of the lattice constants of BaTiO3.......................................14 Fig. 2-8 Schematic representation of different mechanisms of polarization.[24]......................................16 Fig. 2-9 Frequency dependence of several contributions to the polarizability.[24]...................................18 Fig. 2-10 Relationship between ratio of the lattice constants (c/a-1)·100 % of t-BaTiO3 ceramics and the average grain size.[26]...................................18 Fig. 2-11 Dielectric constant of BaTiO3 as a function of the average grain size.[26]...............................20 Fig. 2-12 (a) 自由燒結: X,Y,Z 方向皆有收縮 (b) 抑制燒結: 只有Z方向收縮 [27]...........................................20 Fig. 2-13 硼矽玻璃加入氧化鋁在自由與抑制燒結中晶粒大小與時間關係圖 [27]......................................................21 Fig. 2-14 硼矽玻璃加入氧化鋁在自由與抑制燒結中燒結溫度與相對密度關係圖 [27].................................................21 Fig. 2-15 Bordia與Scherer之燒結模型: (a) 自由燒結 (b) 抑制燒結 [28]......................................................23 Fig. 2-16 (Ni, Ba, Ti) 合金層加速誘發Ni層應力擴散 [2]........23 Fig. 2-17 升溫速率 (a) 與燒結溫度 (b) 對鎳電極連續性的影響 [2].24 Fig. 2-18 快速燒結應用於複合材料之示意圖.....................24 Fig. 3-1 實驗樣品製備流程圖 (MLCC全製程流程圖)...............28 Fig. 4-1 自由燒結與抑制燒結在不同的升溫速率下電容值的變化.......30 Fig. 4-2 自由燒結與抑制燒結在不同的升溫速率下電極連續性的變化...30 Fig. 4-3 自由燒結與抑制燒結在不同的升溫速率下樣品內部剖面.......31 Fig. 4-4 自由燒結與抑制燒結在不同的升溫速率下介電層厚度的變化...31 Fig .4-5 電極連續性與電極, 介電層厚度之關係示意圖.............32 Fig. 4-6 自由燒結與抑制燒結在不同的升溫速率下介電常數的變化.....34 Fig. 4-7 自由燒結與抑制燒結在不同的升溫速率下晶粒大小的變化.....34 Fig. 4-8 自由燒結與抑制燒結在不同的升溫速率下介電損失的變化.....36 Fig. 4-9 自由燒結與抑制燒結在不同的升溫速率下居里溫度點的變化...36 Fig. 4-10 自由燒結與抑制燒結在不同的升溫速率下絕緣電阻的變化....37 Fig. 4-11 自由燒結與抑制燒結在不同的升溫速率下微結構的變化......37 Fig. 5-1 抑制燒結在低升溫速率下收縮行為示意圖.................39 Fig. 5-2 抑制燒結在高升溫速率下收縮行為示意圖.................39

    1.Anton V. Polotai,w Gai-Ying Yang, Elizabeth C. Dickey,and Clive A. Randall, Utilization of Multiple-Stage Sintering to Control Ni Electrode Continuity in Ultrathin Ni–BaTiO3 Multilayer Capacitors, J. Am. Ceram. Soc., 90 [12] 3811–3817 (2007)
    2.B. Jaffe, W. R. Cook, Jr, and H. Jaffe, Piezoelectric ceramics, William R. Cook, Jr. and Hans Jaffe Gould Inc., Cleveland, Ohio, U.S. A., 1971.
    3.Bok-Hee. Kim, Gil-Young. Lee, Woo-Jin. Lee, Jong-Hee. Kim, Dielectric properties in CaZrO3–0.1CaTiO3–xTiO2 system, Materials Science and Engineering, B. Vol. 113, 2004, pp. 198-202.
    4.Dang-Hyok. Yoon, Burtrand. I. Lee, Processing of barium titanate tapes with different binders for MLCC applications-Part II: Comparison of the properties, Journal of the European Ceramic Society, Vol. 24, 2004, pp. 753-761.
    5.François. Roulland, Raphaël. Terras, Sylvain. Marinel, Influence of both milling conditions and lithium salt addition on the sinterability of Ba(Zn1/3Ta2/3)O3, Materials Science and Engineering, B. Vol. 104, 2003, pp. 156-162.
    6.G. Arlt, D. Hennings, and G. de With, “Dielectric properties of fine-grained barium titanate ceramics,” J. Appl. Phys., 58 [4], 1985, 1619-1625.
    7.Hennings, F. K. Detlev, Dielectric materials for sintering in reducing atmospheres, Journal of the European Ceramic Society, Vol. 21, 2001, pp. 1637-1642.
    8.J. Yamamatsu, N. Kawano, T. Arashi, A. Sato, Y. Nakano, T. Nomura, Reliability of multilayer ceramic capacitors with nickel electrodes, Journal of Power Sources, Vol. 60, 1996, pp. 199-203.
    9.PHILIPS COMPONENTS, Surface mount discrete ceramics, 1999/2000 data handbook.
    10.R.K. Bordia and G.W. Scherer, “ On Constrained Sintering-III,Rigid Inclusions,” Acta. Metall.,36[9],2411-16(1988) E.A. Brandes, Smithells Metals Reference Book, 6th ed.(Butterworth & Co.,Ltd.,Washington, DC,1983)
    11.Renzheng. Chen, Xiaohui. Wang, Longtu. Li, Zhilun. Gui, Effects of Nb/Co ratio on the dielectric properties of BaTiO3-based X7R ceramics, Materials Science and Engineering, B. Vol. 99, 2003, pp. 298 – 301.
    12.Ruzhong. Zuo, Longtu. Li, Zhilun. Gui, Influence of silver migration on dielectric properties and reliability of relaxor based MLCCs, Ceramics International, Vol. 26, 2000, pp. 673-676.
    13.Sang-Gye. Lee, Ungyu. Paik, Young-Il. Shin, Jae-Won. Kim, Yeon-Gil, Jung, Control of residual stresses with post process in BaTiO3-based Ni-MLCCs, Materials and Design, Vol. 24, 2003, pp. 169-176.
    14.Sea-Fue. Wang, Thomas. C. K. Yang, Yuh-Ruey. Wang, Kuromitsu. Yoshirou, Effect of glass composition on the densification and dielectric properties of BaTiO3 ceramics, Ceramics International, Vol. 27, 2001, pp. 157-162.
    15.T. Hatano, T. Yamaguchi, W. Sakamoto, T. Yogo, K. Kikuta, H. Yoshida, N. Tanaka, S. Hirano, Synthesis and characterization of BaTiO3-coated Ni particles, Journal of the European Ceramic Society, Vol. 24, 2004, pp. 507-510.
    16.T. Hatano, T. Yamaguchi, W. Sakamoto, T. Yogo, K. Kikuta, H. Yoshida, N. Tanaka, S. Hirano, Synthesis and characterization of BaTiO3-coated Ni particles, Journal of the European Ceramic Society, Vol.24, 2004, pp. 507-510.
    17.W. D. Kingery, H. K. Bowen, and D. R. Uhlmann. Introduction to ceramics, John Wiley and Sons, New York, 1976.
    18.Xiaohui. Wang, Renzheng. Chen, Hui. Zhou, Longtu. Li, Zhilun, Gui, Dielectric properties of BaTiO3-based ceramics sintered in reducing atmospheres prepared from nano-powders, Ceramics International, Vol. 30, 2004, pp. 1895-1898.
    19.Xiao-Hui. Wang, Ren-Zheng. Chen, Zhi-Lun. Gui, Long-Tu. Li, The grain size effect on dielectric properties of BaTiO3 based ceramics, Ceramics International, Vol. 27, pp. 157-162.
    20.Yongli. Wang, Longtu. Li, Jianquan. Qi, Zhenwei. Ma, Jiangli. Cao, Zhilun. Gui, Nickel diffusion in base-metal-electrode MLCCs, Materials Science and Engineering, B Vol. 99, 2003, pp. 378 – 381.
    21.Youichi. Mizuno, Tomoya. Hagiwara, Hirokazu. Chazono, Hiroshi. Kishi, Effect of milling process on core-shell microstructure and electrical properties for BaTiO3-based Ni-MLCC, Journal of the European Ceramic Society, Vol. 21, 2001, pp. 1649-1652.
    22.Young-Il. Shin, Kyung-Moo. Kang, Yeon-Gil. Jung, Jeong-Gu. Yeo, Sang-Gyu. Lee, Ungyu. Paik, Internal stresses in BaTiO3/Ni MLCCs, Journal of the European Ceramic Society”, Vol. 23, 2003, pp. 1427-1434.
    23.Young-Kil. Kim, Yeon-Gil. Jung, Tae-Hyun. Sung, Dae-Hawn. Kim, Ungyu. Paik, Influence of burnout process on pore structure and burnout microstructure in BaTiO3-based Y5V materials, Journal of Materials Processing Technology, Vol. 152, 2004, pp. 276-283.
    24.Z. L. Gui, Y. L. Wang, L. T. Li, Study on the interdiffusion in base-metal electrode MLCCs, Ceramics International, Vol. 30, 2004, pp. 1275-1278.
    25.林居南, 積層陶瓷電容器電性測試, 工業材料108期84年12月,pp. 81-87.
    26.國巨電子股份有限公司積層陶瓷電容製造流程
    27.簡朝和, 林詠強, 束縛燒結的機制與應力研究, 國立清華大學材料工程學系碩士論文, 民國91年.
    28.簡朝和, 廖建閎, 可低溫共燒之玻璃-陶瓷-氧化鋁積層結構的自我束縛燒結行為, 國立清華大學材料工程學系碩士論文, 民國96年.

    無法下載圖示 校內:2015-02-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE