簡易檢索 / 詳目顯示

研究生: 葉慈
Yeh, Tzu
論文名稱: 3.5 GHz PMOS LC壓控振盪器和整數型鎖相迴路設計
3.5 GHz PMOS LC Voltage Controlled Oscillator and Integer-N Phase Locked Loop Design
指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 63
中文關鍵詞: 可調電容陣列壓控振盪器整數型鎖相迴路
外文關鍵詞: Switch capacitor array, Voltage-controlled Oscillator, Integer-N PLL
相關次數: 點閱:139下載:58
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為應用於5G無線通訊之3.5 GHz 頻段下的整數型鎖相迴路電路設計,內容可分為兩個部分:第一部分為鎖相迴路的其中一個子電路,壓控振盪器的設計;第二部分為完整的整數型鎖相迴路。在本論文所設計之兩個電路皆使用 TSMC 0.18 µm CMOS製程設計實現。
    在第一部分壓控振盪器採用可調式電容陣列並加入開關方式提高容值變化範圍,進而使壓控振盪器的頻率可調範圍增加。在本次設計電路之量測頻率變化範圍為3.42 GHz~3.83 GHz (11.3%)。
    相位雜訊在頻率偏移 1 MHz處的最佳表現為 -126.4 dBc/Hz;整體輸出功率皆大於 5 dBm;功率消耗為 21.3 mW。包含緩衝放大器之整體晶片面積為1.055 mm^2。
    在第二部分3.5 GHz整數型鎖相迴路中,子電路包含相位頻率偵測器(PFD)、充電泵(CP)、迴路低通濾波器(LPF)、壓控振盪器(VCO)、除頻器(divider)。在本次設計電路之量測參考頻率為109.375 MHz,操作頻率為3.42 GHz ~ 3.83 GHz;相位雜訊在頻率偏移 1 MHz處的最佳表現為 -93 dBc/Hz,整體皆小於-85 dBc/Hz;輸出功率皆落在0 dBm;整體功率消耗為31.7 mW。包含緩衝放大器之整體晶片面積為1.982 mm^2。

    This thesis is a circuit design for the signal source of wireless communication chips in the frequency band near 3.5 GHz in 5G. It is divided into two parts: the first part is a P-type LC voltage-controlled oscillator using a capacitor array, the second part is a 3.5 GHz integer phase-locked loop circuit design. The above mentioned circuit is realized by TSMC 0.18 µm CMOS process, and the supply voltage is 1.8 V.
    The first part of the voltage-controlled oscillator with the capacitor array can greatly increase the adjustable frequency range from the original (no capacitor array) 4.6% to 11.3%. It enables the phase-locked loop to be locked under various frequency bands. The frequency band above 200 MHz is enough for the phase-locked loop. The best performance of phase noise at 1 MHz offset from 3.7 GHz is -126.4 dBc/Hz. the power consumption is 21.3mW. The total chip size including the buffer amplifier and the bonding pads is 1.055 mm^2.
    The second part is the 3.5 GHz integer PLL design, the sub-circuits include phase frequency detector (PFD), charge pump (CP), low pass filter (LPF), voltage controlled oscillator (VCO), and frequency divider (divider). The output power of the phase-locked loop measurement results has dropped to about 0dBm, but it is still about 60dBm larger than the noise floor. The 1 MHz-offset overall phase noise is -90.33 dBc/Hz at 3.52 GHz and -93 dBc/Hz at 3.84 GHz, which is within a reasonable range. The reference frequency of this design is 109.375 MHz, which corresponds to an output frequency of 3.5 GHz. The power consumption of the overall PLL is 31.7 mW. The total chip size including the buffer amplifier and the bonding pads is 1.982 mm^2.

    中文摘要 I SUMMARY II 誌謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 第1章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 論文架構 5 第2章 差動式可切換變容器之LC壓控振盪器 7 2.1 振盪器簡介 7 2.1.1 振盪器振盪原理 7 2.1.2 共振腔振盪器 7 2.1.4 頻率可調範圍與壓控靈敏度 10 2.1.5 相位雜訊及FOM 10 2.2 電路設計與實現 12 2.2.1 整體電路架構概述 12 2.3 模擬結果 16 2.3.1 壓控振盪器模擬結果 16 第3章 3.5 GHZ 整數型鎖相迴路 19 3.1 鎖相迴路簡介 19 3.1.1 鎖相迴路之問題與討論 21 3.2 鎖相迴路分析 22 3.2.1 鎖相迴路系統分析 22 3.2.2 鎖相迴路雜訊分析 29 3.3 整數型鎖相迴路設計 32 3.3.1 系統設計 32 3.3.2 相位頻率偵測器電路設計 32 3.3.3 充電泵電路設計 35 3.3.4 壓控振盪器電路設計 39 3.3.5 迴路濾波器電路設計 41 3.3.6 除頻器電路設計 43 3.4 模擬結果 44 第4章 量測結果與討論 45 4.1 使用電容陣列之P型LC壓控振盪器 45 4.1.1 量測環境設置 45 4.1.2 使用電容陣列之P型LC壓控振盪器量測結果與討論 47 4.2 3.5 GHZ整數型鎖相迴路 53 4.2.1 量測環境設置 53 4.2.2 3.5 GHz整數型鎖相迴路量測結果與討論 54 第5章 結論 57 5.1 總結 57 5.2 未來展望 58 參考文獻 61

    [1] https://www.edntaiwan.com/20171006nt02-5g-usecase/
    [2] W. C. Lai, "Design of 1V CMOS 5.8 GHz VCO with Switched Capacitor Array Tuning for Intelligent Sensor Fusion," in 2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS), 2020, pp. 1-4.
    [3] P. P. Chary, R. Shaik Peerla, B. T. Pula, A. Dutta and B. D. Sahoo, "Package Aware LC-VCO With Self-Biased Switched Capacitor Structure for Better Supply Noise Rejection," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 12, no. 10, pp. 1653-1660, Oct. 2022.
    [4] L. Fanori, T. Mattsson and P. Andreani, "21.6 A 2.4-to-5.3GHz dual-core CMOS VCO with concentric 8-shaped coils," in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 370-371.
    [5] F. Gardner, "Charge-Pump Phase-Lock Loops," IEEE Transactions on Communications, vol. 28, no. 11, pp. 1849-1858, November 1980.
    [6] J. Lan, F. Lai, Z. Gao, H. Ma and J. Zhang, "A nonlinear phase frequency detector for fast-lock phase-locked loops," in 2009 IEEE 8th International Conference on ASIC, 2009, pp. 1117-1120.
    [7] H. Ghasemian, A. Bahrami, B. jamadi, E. Abiri and M. R. Salehi, "Implement of Two New High-Speed Low-Power PFDs with Low Blind Zone and Dead Zone in 65nm CMOS Technology," in 2020 28th Iranian Conference on Electrical Engineering (ICEE), 2020, pp. 1-6.
    [8] J. Strzelecki and S. Ren, "Near-zero dead zone phase frequency detector with wide input frequency difference," Electronics Letters, 51(14), 2015.
    [9] T. H. Lin, C. L. Ti and Y. H. Liu, "Dynamic Current-Matching Charge Pump and Gated-Offset Linearization Technique for Delta-Sigma Fractional-N PLLs," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 5, pp. 877-885, May 2009.
    [10] A. G. Amer, S. A. Ibrahim and H. F. Ragai, "A novel current steering charge pump with low current mismatch and variation," in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016, pp. 1666-1669.
    [11] K. Kim, K. Kim and C. Yoo, "A f_REF/5 Bandwidth Type-II Charge-Pump Phase-Locked Loop With Dual-Edge Phase Comparison and Sampling Loop Filter," IEEE Microwave and Wireless Components Letters, vol. 28, no. 9, pp. 825-827, Sept. 2018.
    [12] List of WLAN channels. Available on : https://en.wikipedia.org/wiki/List_of_WLAN_channels
    [13] K. K. Hung, P. K. Ko, C. Hu and Y. C. Cheng, "A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors," IEEE Transactions on Electron Devices, vol. 37, no. 3, pp. 654-665, March 1990
    [14] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966.
    [15] B. Razavi, RF microelectronics, 2nd, Pearson Education Inc, 2011.
    [16] B. Rolad, Phase-locked loops: design, simulation, and applications, McGraw-Hill Education, 2007.
    [17] B. Razavi, Design of Analog CMOS Integrated Circuits, Boston: McGraw-Hill, 2001.
    [18] S. A. Osmany, F. Herzel, K. Schmalz, and W. Winkler, "Phase noise and jitter modeling for fractional-N PLLs, " Adv. Radio Sci., 5, 313–320, 2007.
    [19] B. Razavi, Design of CMOS Phase-Locked Loop: From Circuit Level to Aechitecture Level, Cambridge University Press, 2020.
    [20] B. Razavi, RF microelectronics, 2nd, Prentice Hall, 2012.
    [21] W. H. Chen, M. E. Inerowicz and B. Jung, "Phase Frequency Detector With Minimal Blind Zone for Fast Frequency Acquisition," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 12, pp. 936-940, Dec. 2010.
    [22] C. Eichenberger and W. Guggenbuhl, "On charge injection in analog MOS switches and dummy switch compensation techniques," IEEE Transactions on Circuits and Systems, vol. 37, no. 2, pp. 256-264, Feb. 1990.
    [23] W. Rhee, "Design of high-performance CMOS charge pumps in phase-locked loops," in 1999 IEEE International Symposium on Circuits and Systems (ISCAS), 1999.
    [24] B. D. Muer and M. S. J. Steyaert, "On the analysis of Delta Sigma fractional-N frequency synthesizers for high-spectral purity," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, no. 11, pp. 784-793, Nov. 2003.
    [25] X. Xu, X. Yang and T. Yoshimasu, "2.4-GHz band ultra-low-voltage LC-VCO IC in 180-nm CMOS," in 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 2015.
    [26] X. Wang, X. Yang, X. Xu and T. Yoshimasu, "2.4-GHz-band low-voltage LC-VCO IC with simplified noise filtering in 180-nm CMOS," in 2016 IEEE MTT-S International Wireless Symposium (IWS), 2016
    [27] Y. Zhang et al., "A 5.8 GHz Implicit Class-F VCO in 180-nm CMOS Technology," in 2019 IEEE Asia-Pacific Microwave Conference (APMC), 2019.
    [28] G. Huang, J. Zhang, Y. Wu and B. -S. Kim, "A multiband fractional-N PLL for IEEE802.11 a/b/g and GPS applications," in 2017 IEEE Asia Pacific Microwave Conference (APMC), 2017, pp. 968-971.
    [29] J. Jiang, T. Yan, D. Zhou, A. I. Karsilayan and J. Silva-Martinez, "A 2.3-3.9 GHz Fractional-N Frequency Synthesizer with Charge Pump and TDC Calibration for Reduced Reference and Fractional Spurs," in 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2021, pp. 71-74.
    [30] Y. Zhang et al., "A Fractional- N PLL With Space–Time Averaging for Quantization Noise Reduction," IEEE Journal of Solid-State Circuits, vol. 55, no. 3, pp. 602-614, March 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE