簡易檢索 / 詳目顯示

研究生: 連昱彰
Lien, Yu-Chang
論文名稱: 低功率高速快閃式類比數位轉換器
Low-Power High-Speed Flash Analog-to-Digital Converters
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 85
中文關鍵詞: 快閃式類比數位轉換器類比至數位轉換器
外文關鍵詞: ADC, analog-to-digital converter, flash ADC, A/D
相關次數: 點閱:104下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在超寬頻系統中,類比至數位轉換器的效能與功率消耗對整體系統的效率具有重要的影響。本論文著重高速類比至數位轉換器的設計考量,並提出一個應用於超寬頻系統之六位元快閃式類比至數位轉換器的設計。這個設計使用所提出的前置放大器設計方法,可在給定功率的情況下達到最高的頻寬,並且利用所提出比較器的時脈改進方法來降低電路的非理想性。此外,本電路使用偏移消除、電容式插補、以及分散式取樣和維持技巧以解決在快閃式類比至數位轉換器設計上遭遇的問題。本設計使用台積電 0.13 微米製程實現。晶片實際量測結果顯示,在七億赫茲的取樣頻率下,有效位元數為五點三位元。消耗功率為一百一十二毫瓦,有效解析度頻寬為五億赫茲。由於高輸入頻寬以及低功率消耗,本論文中所提出之電路相當適合應用於超寬頻系統。

    The performance and power consumption of analog-to-digital converters (ADCs) affect the efficiency of the ultra wideband (UWB) systems. In this thesis, we focus on the design techniques development of high speed ADCs, and propose a 6-bit high speed ADC design for the applications of UWB systems. In this design, a design methodology for pre-amplifier is used to achieve the maximum bandwidth while consuming the fixed power. Also, the non-ideality of comparators can be suppressed by improving the comparator’s timing. This proposed design adopts the offset cancellation, capacitive interpolation and distributed sample-and-hold techniques to solve the problems in designing flash ADCs. This proposed ADC is designed in TSMC 0.13m process, and the experimental results show that the effective number of bit (ENOB) is 5.3 in the sampling frequency of 700MHz. The power consumption is 112mW, and the resolution bandwidth (ERBW) is 500MHz. Due to the high input bandwidth and low power consumption, this ADC is very suitable to UWB systems.

    List of Figures ix List of Tables xi Chapter 1 Introduction 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 4 Chapter 2 Basics of High-Speed Analog-to-Digital Converters 5 2.1 FLASH ADC 6 2.2 TWO-STEP ADC 8 2.3 SUB-RANGING ADC 9 2.4 FOLDING ADC 11 2.5 PIPELINED ADC 13 2.6 TIME-INTERLEAVED ADC 15 2.7 CONCLUSION 17 Chapter 3 Design Techniques for Flash ADCs 18 3.1 AUTOZEROING 18 3.2 SAMPLE-AND-HOLD 20 3.3 INTERPOLATION 24 3.3.1 Resistive Interpolation 27 3.3.2 Active Interpolation 28 3.3.3 Capacitive Interpolation 29 3.4 RESISTIVE INTERPOLATION 30 3.5 OFFSET CANCELLATION 36 3.5.1 Input Offset Cancellation 36 3.5.2 Output Offset Cancellation 38 3.5.3 Input and Output Offset Cancellation 40 Chapter 4 The Proposed Flash ADC 42 4.1 INTRODUCTION 42 4.2 ARCHITECTURES AND SCHEEMATICS 43 4.2.1 Distributed Sample-and-Hold 45 4.2.2 1st ~ 4th Stage Preamps 46 4.2.3 Comparators 48 4.2.4 65-to-6 ROM Encoder with Bubble Correction 50 4.2.5 Clock Generator 52 4.2.6 Clock Divider 53 4.3 GAIN CONSIDERATION 54 4.4 INTRODUCTION OF GM/ID METHOD 55 4.5 PREAMP DESIGN METHODOLOGY 56 4.6 LOW-POWER CONSIDERATION 59 4.7 7 LAYOUT 67 4.8 SIMULATION RESULTS 68 4.9 EXPERIMENTAL RESULTS 74 Chapter 5 Conclusion and Future Work 80 References 82

    [1] (2003) IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a). [Online]. Available: http://www.ieee802.org/15/pub/TG3a.html
    [2] A. Batra et al, “Multi-band OFDM Physical Layer Proposal,” IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a), Sep. 2003, http://www.ieee802.org/15
    [3] E. Green, “W241: System Architectures for High-Rate Ultra Wideband Communications,” Intel Labs.
    [4] Y.-Z. Lin, Y.-T. Liu and S.-J. Chang, “A 5-bit 4.2-GS/s Flash ADC in 0.13-um CMOS Process,” IEEE Custom Integrated Circuits Conference, pp.213–216, 2007.
    [5] S. Padoan, A. Boni, C. Morandi, and F. Venturi, “A Novel Coding Schemes for the ROM of Parallel ADCs, Featuring Reduced Conversion Noise in the Case of Single Bubles in the Thermometer Code,” in IEEE ICECS, 1998, pp. 271–274.
    [6] T. Sekino, M. Takeda, K. Koma, “A monolithic 8b two-step parallel ADC without DAC and subtractor circuits,” in IEEE International Solid-State Circuits Conference, pp. 46–47, Feb. 1982.
    [7] A. G. F. Dingwall and V. Zazzu, “An 8-MHz CMOS subranging 8-bit A/D converter,” IEEE J. Solid-State Circuits, vol. SSC-20, pp. 1138–1143, Dec. 1985.
    [8] A. Arbel and R. Kurz, “Fast ADC,” IEEE Transactions on Nuclear Science, vol. NS-22, Feb. 1975, pp. 446–451.
    [9] A. G. W. Venes, R. J. van de Plassche, “An 80-MHz, 80-mW, 8-b CMOS folding A/D converter with distributed track-and-hold preprocessing,” IEEE J. Solid-State Circuits, vol. 33, pp. 1932–1938, December 1998.
    [10] K. Martin, “A high-speed, high accuracy pipeline A/D converter,” Conference record of Asilomar conference on circuits, systems and computers, Pacific Grove, CA, 1981, pp. 489–492.
    [11] B. Murmann and B. Boser, “A 12-bit 75-MS/s Pipelined ADC Using Open-Loop Residue Amplification,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2040–2050, Dec. 2003.
    [12] D. M. Hummels, “Distortion Compensation for Time-Interleaved Analog-to-Digital Converters,” IEEE Inst. and Measurement Tech Conf., Jun. 1996. pp. 728–731.
    [13] T. Matsuura et al., “An 8 b 20 MHz CMOS half-flash A/D Converter,” in ISSCC Dig. Tech. Papers, Feb. 1988, pp. 200–221.
    [14] “CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters,” 2nd ed., Rudy van de Plassche, Kluwer Academic Publishers, Ch. 1-3
    [15] K. Kattmann and J. Barrow, “A technique for reducing differential non-linearity errors in flash A/D converters,” in Proc. IEEE Int. Solid-State Circuits Conf. 1001, pp. 170–171.
    [16] P. Scholtens and M. Vertregt, “A 6-b 1.6-Gsample/s flash ADC in 0.18-um CMOS using averaging termination,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1599–1609, Dec. 2002.
    [17] C. Sandner, M. Clara, A. Santner, T. Hartig, and F. Kuttner, “A 6-bit 1.2-GS/s low-power flash-ADC in 0.13-µm digital CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1499–1505, 2005.
    [18] F. Silveira et al., “A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a Silicon-on-Insulator micropower OTA,” IEEE J. Solid-State Circuits, Vol. 31, no. 9, pp. 1314–1319, Sep. 1996.
    [19] Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw Hill, 2001.
    [20] P. M. Figueiredo, P. Cardoso, A. Lopes, C. Fachada, N. Hamanishi, K. Tanabe, and J. Vital, “A 90nm CMOS 1.2V 6b 1GS/s two-step subranging ADC,” in ISSCC Dig. Tech. Papers, Feb. 2006, pp. 568–569.
    [21] G. Geelen, “A 6b 1.1Gsample/s CMOS A/D converter,” in ISSCC Dig. Tech. Papers, Feb. 2001, pp. 128–129.
    [22] G. V. der Plas, S. Decoutere, and S. Donnay, “A 0.16 pJ/Conversion-Step 2.5 mW 1.25 GS/s 4b ADC in a 90 nm digital CMOS process,” in ISSCC Dig. Tech. Papers, pp.2308–2309, San Francisco, Feb. 2006.
    [23] David Johns and Ken Martin, “Analog Integrated Circuit Design”, John Wiley & Sons, New York, 1997.
    [24] M. Choi and A. A. Abidi, “A 6 b 1.3GSample/s A/D converter in 0.35 m CMOS,” IEEE J. Solid-State Circuits, vol. 36, pp. 1847–1858, Dec. 2001.
    [25] H. W. Ting, B. D. Liu, and S. J. Chang, “A histogram-based testing method for estimating A/D converter performance,” IEEE Trans. Instrum. Meas., vol. 57, pp. 420–427, Feb. 2008.

    下載圖示 校內:2009-08-26公開
    校外:2011-08-26公開
    QR CODE