簡易檢索 / 詳目顯示

研究生: 謝逸霖
Hsieh, YI-Lin
論文名稱: 以透明引擎研究缸內流場特性
An experimental study on flow characterization in a simulated optical engine
指導教授: 趙怡欽
Chao, Yei-Chin
共同指導教授: 吳志勇
Wu, Chih-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 91
中文關鍵詞: 光學透明引擎粒子影像測速缸內直噴引擎
外文關鍵詞: optical access engine, PIV, GDI engine
相關次數: 點閱:75下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 潔淨節能而且可靠的引擎系統必須仰賴燃燒室中燃料噴注、點火、燃料/空氣混合過程的精確控制,本論文所進行的研究係以光陽機車股份有限公司目前量產之商用500c.c.單缸四閥歧管噴射引擎為平台,其缸徑與衝程分別為92mm與75mm。本研利用上述的引擎平台並將之修改成光學透明引擎,運用石英汽缸取代原有的汽缸套,使雷射光頁可以進出燃燒室以進行相關研究,該光學透明引擎亦設置一透明石英視窗於延伸活塞中,此設計將可以讓吾人觀察水平切面的流場特徵。另外一方面,吾人進行引擎潤滑系統的修改、雷射系統及攝影機與該引擎系統的同步控制,和粒子植入裝置以完善本研究之相關所需週邊配置。燃燒室中的流場特徵主要是利用視流法與粒子影像測速技術加以量測,其所量得之二維速度流場、平均速度、旋轉比與滾轉比之成果將成為汽油引擎缸內定量分析重要的數據。

    A reliable, clean, and energy-saving engine system deeply depends on a large degree of the optimal control of fuel injection, ignition, and fuel/air mixing process in the combustion chamber. Investigations in the present study are carried out in a cylinder of a mass-production 500c.c single-cylinder four valve PFI engine supplied by Kymco. The bore and stroke is 92mm and 75 mm respectively. The engine is modified to facilitate optical access by the placement of a quartz liner for laser beam entrance and exit and one quartz window with a diameter of 50 mm into the elongated piston for the detection of Mie-scattering. Furthermore, the modified lubrication system, electronic control system for laser and CCD synchronization, and a seeding system are also developed for optical access engine. The flow characteristics in the combustion chamber are measured by using flow visualization technique and digital particle image velocimetry. The measured 2-D velocity information, average velocity graph, swirl ratio, and tumble ratio can provide the basis for quantitative analysis of in-cylinder flow field of gasoline engine.

    目錄 摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 符號定義 xii 第一章 緒論 1 1.1 研究動機 1 1-2 研究目的 4 第二章 文獻回顧 5 第三章 實驗設備及方法 8 3-1 實驗設備 8 3-1-1 光學透明引擎 8 3-1-2 活塞頭形式 11 3-1-3 動力與傳動系統 12 3-1-4 訊號控制單元 13 3-1-5 雷射與取像系統 15 3-1-6 質點植入系統 15 3-2 實驗方法 17 3-2-1 取像範圍定義 17 3-2-2 雷射數位化粒子影像測速技術 18 3-2-3 相位平均(phase average) 20 第四章 結果與討論 21 4-1 汽缸中心面缸內流場運動 22 4-2 閥門中心面缸內流場運動(進排氣閥門側) 25 4-3 橫截面流場觀測(65mm處) 27 4-4橫截面流場觀測(45mm處) 30 4-5橫截面流場觀測(25mm處) 32 4-6 缸內流場總體流場分布示意 33 4-7 缸內流場的量化指標 34 4-7-1平均速度(mean velocity) 34 4-7-2 滾轉比(tumble ratio)與渦漩比(swirl ratio) 34 4-7-3 缸內流場的平均速度特性分析 36 4-7-4 缸內流場的滾轉特性指標 37 4-7-5 缸內流場的渦漩特性指標 38 第五章 結論與未來目標 39 5-1 結論 39 5-2 缸內直噴引擎設計方向建議 40 5-3 未來目標 41 參考文獻 43 表目錄 表3-1 標的引擎規格表 47 表3-2 雷射規格表 47 圖目錄 圖3-1 實驗設備架構 48 圖3-2 光學引擎示意圖 49 圖3-3 光學汽缸 50 圖3-4 縱剖面影像擷取示意圖 50 圖3-5 橫剖面影像擷取示意圖 51 圖3-6 加長型中空活塞 51 圖3-7 壓克力活塞頂 52 圖3-8 曲軸角度判讀盤 52 圖3-9 質點植入系統示意圖 53 圖3-10 縱剖面雷射位置示意圖 54 圖3-11 縱剖面雷射位置與橫剖面視窗示意圖 54 圖3-12 橫剖面雷射位置示意圖 55 圖3-13 橫剖面雷射位置與縱剖面視窗示意圖 55 圖3-14 質點影像測速訊號處理程序示意圖 56 圖3-15 轉盤測試影像與向量圖 56 圖3-16 轉盤PIV分析與實際速度比較 57 圖4-1 CA 60° ATDC 汽缸中心面觀測視窗速度分布與向量圖 58 圖4-2 CA 90° ATDC 汽缸中心面觀測視窗速度分布與向量圖 58 圖4-3 CA 120° ATDC 汽缸中心面觀測視窗速度分布與向量圖 59 圖4-4 CA 150° ATDC 汽缸中心面觀測視窗速度分布與向量圖 59 圖4-5 CA 180° ATDC 汽缸中心面觀測視窗速度分布與向量圖 60 圖4-6 CA 210° ATDC 汽缸中心面觀測視窗速度分布與向量圖 60 圖4-7 CA 240° ATDC 汽缸中心面觀測視窗速度分布與向量圖 61 圖4-8 CA 270° ATDC 汽缸中心面觀測視窗速度分布與向量圖 61 圖4-9 CA 300° ATDC 汽缸中心面觀測視窗速度分布與向量圖 62 圖4-10 CA 60°~ 180° ATDC進氣行程汽缸中心面速度分布與向量圖 63 圖4-11 CA 210°~ 300° ATDC壓縮行程汽缸中心面速度分布與向量圖 64 圖4-12 CA 60° ATDC 閥門中心面觀測視窗速度分布與向量圖 65 圖4-13 CA 90° ATDC 閥門中心面觀測視窗速度分布與向量圖 65 圖4-14 CA 120° ATDC 閥門中心面觀測視窗速度分布與向量圖 66 圖4-15 CA 150° ATDC 閥門中心面觀測視窗速度分布與向量圖 66 圖4-16 CA 180° ATDC 閥門中心面觀測視窗速度分布與向量圖 67 圖4-17 CA 210° ATDC 閥門中心面觀測視窗速度分布與向量圖 67 圖4-18 CA 240° ATDC 閥門中心面觀測視窗速度分布與向量圖 68 圖4-19 CA 270° ATDC 閥門中心面觀測視窗速度分布與向量圖 68 圖4-20 CA 300° ATDC 閥門中心面觀測視窗速度分布與向量圖 69 圖4-21 CA 60°~180° ATDC進氣行程閥門中心面速度分布與向量圖 70 圖4-22 CA 210°~300° ATDC壓縮行程閥門中心面速度分布與向量圖 71 圖4-23 CA 60° ATDC 65mm橫截面觀測視窗速度分布與向量圖 72 圖4-24 CA 90° ATDC 65mm橫截面觀測視窗速度分布與向量圖 72 圖4-25 CA 120° ATDC 65mm橫截面觀測視窗速度分布與向量圖 73 圖4-26 CA 150° ATDC 65mm橫截面觀測視窗速度分布與向量圖 73 圖4-27 CA 180° ATDC 65mm橫截面觀測視窗速度分布與向量圖 74 圖4-28 CA 210° ATDC 65mm橫截面觀測視窗速度分布與向量圖 74 圖4-29 CA 240° ATDC 65mm橫截面觀測視窗速度分布與向量圖 75 圖4-30 CA 270° ATDC 65mm橫截面觀測視窗速度分布與向量圖 75 圖4-31 CA 300° ATDC 65mm橫截面觀測視窗速度分布與向量圖 76 圖4-32 CA 60°~180° ATDC進氣行程65mm橫截面速度分布與向量圖 77 圖4-33 CA 210°~300° ATDC壓縮行程65mm橫截面速度分布與向量圖 78 圖4-34 CA 120° ATDC 45mm橫截面觀測視窗速度分布與向量圖 79 圖4-35 CA 150° ATDC 45mm橫截面觀測視窗速度分布與向量圖 79 圖4-36 CA 180° ATDC 45mm橫截面觀測視窗速度分布與向量圖 80 圖4-37 CA 210° ATDC 45mm橫截面觀測視窗速度分布與向量圖 80 圖4-38 CA 240° ATDC 45mm橫截面觀測視窗速度分布與向量圖 81 圖4-39 CA 120°~240° ATDC 45mm橫截面速度分布與向量圖 82 圖4-40 CA 120° ATDC 25mm橫截面觀測視窗速度分布與向量圖 83 圖4-41 CA 150° ATDC 25mm橫截面觀測視窗速度分布與向量圖 83 圖4-42 CA 180° ATDC 25mm橫截面觀測視窗速度分布與向量圖 84 圖4-43 CA 210° ATDC 25mm橫截面觀測視窗速度分布與向量圖 84 圖4-44 CA 240° ATDC 25mm橫截面觀測視窗速度分布與向量圖 85 圖4-45 CA 120°~240° ATDC 25mm橫截面速度分布與向量圖 86 圖4-46 CA 120° ATDC 缸內總體流場示意圖 87 圖4-47 CA 150° ATDC 缸內總體流場示意圖 87 圖4-48 CA 180° ATDC 缸內總體流場示意圖 88 圖4-49 CA 210° ATDC 缸內總體流場示意圖 88 圖4-50 CA 210° ATDC 缸內總體流場示意圖 89 圖4-51汽缸中心面與進排氣閥門中心面平均速度 90 圖4-52橫剖面平均速度 90 圖4-53汽缸中心面與進排氣閥門中心面平均滾轉比 91 圖4-54汽缸中心面與進排氣閥門中心面平均渦漩比 91

    [1] Lake, T. H., “Comparison of direct injection gasoline combustion systems”, SAE Technical Paper, 980154, 1998.
    [2] Zhao, F., Harrington, D. L., and Lai, M.-C., Automotive Gasoline Direct-Injection Engines, Society of Automotive Engineers, 2002.
    [3] Stan, C., Stanciu, A., Troeger, R., Martorano, L., Tarantino, C., and Lensi, R., “Influence of Mixture Formation on Injection and Combustion Characteristics in a Compact GDI Engine”, SAE Technical Paper, 2002-01-0997.
    [4] Drake, M. C., and Haworth, D. C., “Advanced gasoline engine development using optical diagnostics and numerical modeling”, Proceedings of the Combustion Institute, Vol. 31, Iss.1, pp. 99-124, Jan. 2007.
    [5] Itoh, T., Kakuho, A., Hiraya, K., Takahashi, E., and Urushihara, T., “Quantitative Analysis of Mixture Preparation Processes in New Direct-Injection Spark Ignition Engines”, JSME International Journal Series B Vol. 48, No. 4 Special Issue on Advanced Combustion Technology in Internal Combustion Engines pp.679-686, 2005.
    [6] Ekchian, A., and Hoult, D. P., “Flow Visualization Study of the Intake Process of an Internal Combustion Engine”, SAE Technical Paper, 790095, 1979.
    [7] Rask, R. B., “Laser Doppler Anemometer Measurements in an Internal Combustion Engine”, SAE Technical Paper, 790094, 1979.
    [8] Namazian, M., Lyford-Pike, E., Sanchez-Barsse, J., Heywood, J., and Rife, J., “Schlieren Visualization of the Flow and Density Fields in the Cylinder of a Spark-Ignition Engine”, SAE Technical Paper, 800044, 1980.
    [9] Ronnback, M., Le, W. X., and Linna, J. R., “Study of Induction Tumble by Particle Tracking Velocimetery in a 4-Valve Engine”, SAE Technical Paper, 912376, 1991.
    [10] Fauere, M. A., Heikal, M. R., and Jackson N. S., “Three Dimensional In-Cylinder Flow Maps using 2D PIV System”, Symposium of I Mech E Conference, Optical Methods and Data Processing in Heat and Field Flow, City University, London, UK, 1996.
    [11] Hirotomi, T., Nagayama, I., Kobayashi, S., and Yamamasu, M., “Study of Induction Swirl in a Spark Ignition Engine”, SAE Technical Paper, 810496, 1981.
    [12] Acroumanis, C., Hu, Z., and Whitelaw, J. H., “Steady Flow Characterization of Tumble Generating Four-Valve Cylinder Heads”, Proceedings Of I.Mech. E., vol. 207, pp.203-210,1993.
    [13] Coz, J. L., Henriot, S. and Pinchon, P., “An Experimental and Computational Analysis of the Flow Field in a Four-Valve Spark-Ignition Engine-Focus on Cycle-Resolved Turbulence”, SAE Technical Paper, 900056, 1990.
    [14] Hentschel, W., Block, B., Hovestadtt, T., Meyer, H., Ohmstede, G., Richter, V., Stiebels, B., and Winkler, A., “Optical Diagnostics and CFD-Simulations to Support the Combustion Process Development of the Volkswngen FSI Direct-injection Gasoline Engine”, SAE Technical Paper, 2001-01-3648, 2001.
    [15] Kadota, T., Mizutani, S., Wu, C.-Y., and Hoshino, M., “Fuel Droplet Size Measurements in the Combustion Chamber of a Motored SI Engine via Laser Mie Scattering”, SAE Transactions, Vol. 99, No. 3, pp. l062-1 073, 1990.
    [16] Carling, R. W., and Singh, G., “Overview of Engine Combustion Research at Sandia National Laboratories”, SAE Technical Paper, 1999-01-2246, 1999.
    [17] Dec, J. E., “Soot Distribution in a DI Diesel Engine Using 2D Imaging of Laser-lnduced Incandescence”, SAE Technical Paper, 920115, 1992.
    [18] Christoph, E., Dec, J. E., “Diesel Engine Combustion Studies in a Newly Designed Optical-Access Engine Using High-speed Visualization and 2D Laser Imaging” SAE Transactions, Vol. 102, No. 4, 703-723, 1993.
    [19] Heywood, J. B., “Fluid Motion within the Cylinder of Internal Combustion Engines-The 1986 Freeman Scholar Lecture”, Journal of Fluids Engineering, Transactions of the ASME, Vol. 109, No. 1, pp. 3-55, 1987.
    [20] Westerweel, J., “Fundamentals of digital particle image velocimetry”, Measurements science and technology, Vol. 8,pp.1379-1392, 1997.
    [21] 吳志勇, “噴流火焰暫態吹熄過程之行為與不穩定特性之探討”, 航空太空工程學系碩博士班博士論文, 2003。
    [22] Adrian, R. J., “An image shifting technique to resolve directional ambiguity in double-pulsed velocimetry”, Applied optics, Vol. 25, No. 21 , 1986.
    [23] Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, 1988.

    無法下載圖示 校內:2015-08-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE