簡易檢索 / 詳目顯示

研究生: 林宏憲
Lin, Hung-Hsien
論文名稱: 應用基於NURBS之強健遞迴模糊類神經網路干擾補償於動態快速非奇異終端滑模控制之循跡精度改善
Contour Following Accuracy Improvement of DFNTSMC Using NURBS based Robust Recurrent Neural-Fuzzy Disturbance Compensation
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 158
中文關鍵詞: 循跡控制滑模控制干擾補償摩擦力補償模糊類神經NURBS
外文關鍵詞: Contour following control, sliding mode control, disturbance compensation, friction compensation, neural-fuzzy, NURBS
相關次數: 點閱:114下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之受控體為由兩顆交流伺服馬達所帶動之XY運動平台,存在許多機械傳動問題,如:摩擦力、背隙、結構共振等,並受到其他外擾影響,如:系統非線性、各軸動態不匹配、伺服落後及未知干擾等。如何消除上述問題,以降低追蹤誤差及輪廓誤差,為高精密加工之關鍵。因此本論文提出具有高精度性能之動態快速非奇異終端滑模控制,並提出修改型適應性LuGre摩擦力補償架構以抑制摩擦力之影響,且對未知干擾、模型及參數之集總不確定性提出基於NURBS之強健遞迴模糊類神經網路干擾補償架構。此外,為了達到高精度之訴求,本論文進一步提出基於NURBS 之 RFCMAC速度估測器。本論文除了使用Matlab來模擬驗證控制系統總架構之可行性,亦在XY運動平台上進行循跡控制實驗,最終達到高精度循跡控制之訴求,使各軸RMS追蹤誤差小於〖10〗^(-7)m,而輪廓誤差RMS值小於1.124μm。

    The controlled plant of this thesis is an XY motion platform actuated by two AC servomotors. Such a platform will encounter many mechanical transmission problems such as friction, backlash, and structural resonance, as well as other external disturbances such as system nonlinearity, servo lags, and unknown disturbances. Hence, eliminating the above problems to reduce tracking error and contour error is crucial in achieving high-precision machining. Therefore, this thesis proposes a dynamic fast nonsingular terminal sliding mode control (DFNTSMC) with high precision performance. In addition, to suppress the adverse effects caused by friction, an adaptive LuGre friction force compensation model is also propsed in this thesis. Moreover, a NURBS-based robust recurrent neural-fuzzy disturbance compensation is proposed to cope with the unknown disturbances and modeling uncertainties. In addition, to achieve the goal of high tracking precision, a NURBS-based RFCMAC velocity estimator is proposed to obtain accurate velocity estimation. This thesis uses Matlab software to verify the feasibility of the algorithms of the overall control system and implements the algorithms on the XY motion platform. This thesis achieves the aim of high precision tracking control, in that the RMS tracking error is smaller than 〖10〗^(-7)m, and the RMS contour error is within 1.124 μm.

    中文摘要 I EXTENDED ABSTRACT II 誌謝 XII 目錄 XIV 表目錄 XVII 圖目錄 XIX 第一章 緒論 1 1.1 前言 1 1.2 研究動機及文獻回顧 2 1.3 論文貢獻及架構 5 第二章 循跡控制系統簡介 7 2.1 參數式曲線及插值器 7 2.1.1 NURBS非均勻有理基底雲形線 7 2.1.2參數式曲線插值器 11 2.2 加減速規劃 15 2.3 伺服馬達系統模型 19 2.4 Lorenz之馬達系統參數鑑別 23 第三章 NURBS based RFCMAC速度估測器 29 3.1 一般速度觀測器 29 3.2 NURBS based RFCMAC速度估測器 32 3.2.1 CMAC小腦模型介紹 32 3.2.2 NURBS based RFCMAC速度估測器設計 34 3.2.3各參數更新式及收斂性證明 37 第四章 修改型適應性LuGre摩擦力模型 40 4.1 LuGre摩擦力模型 40 4.2 摩擦力參數鑑別 43 4.3 修改型適應性LuGre摩擦力模型 47 第五章 動態快速非奇異終端滑動模式控制 49 5.1 一般滑動模式控制 49 5.2 快速非奇異終端滑動模式控制 53 5.3 動態PID滑動模式控制 55 5.4 動態快速非奇異終端滑動模式控制 58 第六章 NURBS based強健遞迴模糊類神經干擾補償 66 6.1 干擾補償架構及設計 66 6.2 各參數更新式 70 6.3 控制系統總架構之穩定性分析 74 6.3.1 Lyapunov 穩定性證明及參數更新式推導 74 6.3.2 基於Barbalat’s lemma之收斂性證明 85 第七章 實驗架構與結果 87 7.1 實驗設備介紹 87 7.1.1 硬體介紹 87 7.1.2 軟體介紹 93 7.1.3 實驗架構 93 7.2 模擬結果 94 7.2.1 實驗設置及參數設定 95 7.2.2 模擬結果 103 7.3 實作結果 113 7.3.1 實驗設置及參數設定 113 7.3.2 實驗結果 123 7.4 實驗總結 140 第八章 結論與建議 141 8.1 結論 141 8.2 未來展望與建議 142 參考文獻 143

    [1] 台灣機械工業同業公會。2017年1~12月台灣機械出口機種別統計分析表。檢索日期2018年5月22日,取自http://www.tami.org.tw/statistics.php
    [2] L. Piegl, “On NURBS:a survey,” IEEE Computer Graphics and Applications, vol. 11, no. 3, pp. 55-71, Jan. 1991.
    [3] L. Piegl and W. Tiller, The NURBS Book. New York, USA: Springer, 1997.
    [4] M. Y. Cheng, M. C. Tsai, and J. C. Kuo, “Real-time NURBS command generators for CNC servo controllers,” International Journal of Machine Tools and Manufacture, vol. 42, no. 7, pp. 801-813, May. 2002.
    [5] A. N. Poo, J. G. Bollinger, and G. W. Younkin, “Dynamic errors in type 1 contouring systems,” IEEE Transactions on Industry Applications, vol. IA-8, no. 4, pp. 477-484, Jul. 1972.
    [6] R. Ramesh, M. A. Mannan, and A. N. Poo, “Tracking and contour errors control in CNC servo systems,” International Journal of Machine Tools and Manufacture, vol. 45, no. 3, pp. 301-326, Mar. 2005.
    [7] 蘇科翰,輪廓誤差控制於參數式自由曲線循跡運動之研究,博士論文,國立成功大學,電機工程學系,台灣,2008。
    [8] C. C. D. Wit, H. Olsson, K. J. Astrom, and P. Lischinsky, “A new model for control of systems with friction,” IEEE Transactions on Automatic Control, vol. 40, no. 3, pp. 419-425, Mar. 1995.
    [9] C. C. D. Wit and P. Lischinsky, “Adaptive friction compensation with dynamic friction model,” in Proceedings of the 13th World Congress of IFAC, San Francisco USA, 30 June - 5 July, 1996. IFAC Proceedings Volumes, vol. 29, no. 1, pp. 2078-2083.
    [10] Y. Tan and I. Kanellakopoulos, “Adaptive nonlinear friction compensation with parametric uncertainties,” in Proceedings of the American Control Conference, San Diego, CA, USA, Jun. 1999, pp. 2511-2515.
    [11] L. Xu and B. Yao, “Adaptive robust control of mechanical systems with nonlinear dynamic friction compensation,” in Proceedings of the American Control Conference, Chicago, IL, USA, Jun. 2000, pp. 2595-2599.
    [12] Q. Chen, L. Tao, Y. Nan, and X. Ren, “Adaptive nonlinear sliding mode control of mechanical servo system with LuGre friction compensation,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 138, no. 2, pp. 021003-1-021003-9, Dec. 2015.
    [13] V. I. Utkin, “Survey paper variable structure systems with sliding modes,” IEEE Transactions on Automatic Control, vol. 22, no. 2, pp. 212-222, Apr. 1977.
    [14] V. I. Utkin, “Sliding mode control design principles and applications to electric drives,” IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 23-36, Feb. 1993.
    [15] 楊憲東,非線性控制課程講義,國立成功大學,航空太空研究所,台灣,2011。
    [16] 張宇承,具適應性滑動模式干擾量補償架構之循跡精度改善研究,碩士論文,國立成功大學,電機工程學系,台灣,2012。
    [17] 呂杰修,馬達自動化繞線之無感測器式張力控制研究,碩士論文,國立成功大學,電機工程學系,台灣,2014。
    [18] 張峰達,使用改良式反覆學習滑動控制之循跡精度改善研究,碩士論文,國立成功大學,電機工程學系,台灣,2016。
    [19] G. Bartolini, A. Ferrara, E. Usai, and V. I. Utkin, “On multi-input chattering-free second-order sliding mode control,” IEEE Transactions on Automatic Control, vol. 45, no. 9, pp. 1711-1717, Sep. 2000.
    [20] Y. Feng, F. Han, and X. Yu, “Chattering free full-order sliding-mode control,” Automatica, vol. 50, no. 4, pp. 1310-1314, Apr. 2014.
    [21] Q. Xu, “Continuous integral terminal third-order sliding mode motion control for piezoelectric nanopositioning system,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 4, pp. 1828-1838, Aug. 2017.
    [22] R. Palm, “Sliding mode fuzzy control,” in Proceedings of the IEEE International Conference on Fuzzy Systems, San Diego, CA, USA, Mar. 1992, pp. 519-526.
    [23] C. J. Fallaha, M. Saad, H. Y. Kanaan, and K. Al-Haddad, “Sliding-mode robot control with exponential reaching law,” IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 600-610, Feb. 2011.
    [24] I. M. Boiko, “Chattering in sliding mode control systems with boundary layer approximation of discontinuous control,” International Journal of Systems Science, vol. 44, no. 6, pp. 1126-1133, Jun. 2013.
    [25] A. Saghafinia, H. W. Ping, M. N. Uddin, and K. S. Gaeid, “Adaptive fuzzy sliding-mode control into chattering-free IM drive,” IEEE Transactions on Industry Applications, vol. 51, no. 1, pp. 692-701, Jan.-Feb. 2015.
    [26] I. E. Makrini, C. Rodriguez-Guerrero, D. Lefeber, and B. Vanderborght, “The variable boundary layer sliding mode control: A safe and performant control for compliant joint manipulators,” IEEE Robotics and Automation Letters, vol. 2, no. 1, pp. 187-192, Jan. 2017.
    [27] X. Zhang, C. Yin, and H. Bai, “Fixed-boundary-layer sliding-mode and variable switching frequency control for a bidirectional DC–DC converter in hybrid energy storage system,” Electric Power Components and Systems, vol. 45, no. 13, pp. 1474-1485, Dec. 2017.
    [28] F. Song, and S. M. Smith, “A comparison of sliding mode fuzzy controller and fuzzy sliding mode controller,” in Proceedings of the NAFIPS, Atlanta, GA, USA, Jul. 2000, pp. 480-484.
    [29] H. F. Ho, Y. K. Wong, and A. B. Rad, “Adaptive fuzzy sliding mode control with chattering elimination for nonlinear SISO systems,” Simulation Modelling Practice and Theory, vol. 17, no. 7, pp. 1199-1210, Aug. 2009.
    [30] Y. Long and L. Li, “Fuzzy fractional order sliding mode control for automatic
    clutch of vehicle AMT,” International Journal of Smart Home, vol. 9, no. 2, pp. 53-68, Feb. 2015.
    [31] H. Morioka, K. Wada, A. Sabanovic, and K. Jezernik, “Neural network based chattering free sliding mode control,” in Proceedings of the 34th SICE Annual Conference, Hokkaido, Japan, Jul. 1995, pp. 1303-1308.
    [32] H. Hu and P. Y. Woo, “Fuzzy supervisory sliding-mode and neural-network control for robotic manipulators,” IEEE Transactions on Industrial Electronics, vol. 53, no. 3, pp. 929-940, Jun. 2006.
    [33] N.Cibiraja and M.Varatharajana, “Chattering reduction in sliding mode control of quadcopters using neural networks,” Energy Procedia, vol. 117, pp. 885-892, Jun. 2017.
    [34] A. Al-Ghanimi, J. Zheng, and Z. Man, “A combined robust terminal sliding mode controller with perturbation estimator for piezoelectric actuated positioner,” in Proceedings of the 11th IEEE Conference on Industrial Electronics and Applications, Hefei, China, Jun. 2016, pp. 2141-2146.
    [35] A. Goel and A. Swarup, “MIMO uncertain nonlinear system control via adaptive high-order super twisting sliding mode and its application to robotic manipulator,” Journal of Control, Automation and Electrical Systems, vol. 28, no. 1, pp. 36-49, Feb. 2017.
    [36] I. Furtat, A. Fradkov, and Y. Orlov, “State feedback finite time sliding mode stabilization using dirty differentiation,” IFAC PapersOnLine, vol. 50, no. 1, pp. 9619-9624, Jul. 2017.
    [37] F. J. Lin, S. Y. Chen, and K. K. Shyu, “Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system,” IEEE Transactions on Neural Networks, vol. 20, no. 6, pp. 938-951, May. 2009.
    [38] 沈漢賢,適應性動態模糊滑動模式控制器設計,碩士論文,中華大學,電機工程學系,台灣,2010。
    [39] S. Mobayen, “An adaptive chattering-free PID sliding mode control based on dynamic sliding manifolds for a class of uncertain nonlinear systems,” Nonlinear Dynamics, vol. 82, no. 1-2, pp. 53-60, Oct. 2015.
    [40] J. J. E. Slotine and W. Li, Applied Nonlinear Control. New Jersey: Prentice Hall, 1991.
    [41] C. Chicone, Ordinary Differential Equations with Applications. New York, USA: Springer, 1999.
    [42] 鄭銘揚,Introduction to Motion Control System課程講義,國立成功大學,電機工程研究所,台灣,2017。
    [43] Z. Man and X. H. Yu, “Terminal sliding mode control of MIMO systems,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 44, no. 11, pp. 1065-1070, Nov. 1997.
    [44] S. Yu, X. H. Yu, B. Shirinzadeh, and Z. Man, “Continuous finite-time control for robotic manipulators with terminal sliding mode,” Automatica, vol. 41, no. 11, pp. 1957-1964, Nov. 2005.
    [45] K. Abidi, J. X. Xu, and J. H. She, “A discrete-time terminal sliding-mode control approach applied to a motion control problem,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3619-3627, Sep. 2009.
    [46] Y. Feng, X. Yu, and Z. Man, “Non-singular terminal sliding control of rigid manipulators,” Automatica, vol. 38, no. 12, pp. 2159-2167, Dec. 2002.
    [47] Y. Feng, J. Zheng, X. H. Yu, and N. V. Truong, “Hybrid terminal sliding mode observer design method for permanent magnet synchronous motor control system,” in Proceedings of the International Workshop on Variable Structure Systems, Antalya, Turkey, Jun. 2008, pp. 106-111.
    [48] Y. Feng, X. H. Yu, and F. L. Han, “On nonsingular terminal sliding-mode control of nonlinear systems,” Automatica, vol. 49, no. 6, pp. 1715-1722, Jun. 2013.
    [49] J. Zheng, H. Wang, Z. Man, J. Jin, and M. Fu, “Robust motion control of a linear motor positioner using fast nonsingular terminal sliding mode,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 4, pp. 1743-1752, Aug. 2015.
    [50] A. Al-Ghanimi, J. Zheng, and Z. Man, “A fast non-singular terminal sliding mode control based on perturbation estimation for piezoelectric actuators systems,” International Journal of Control, vol. 90, no. 3, pp. 480-491, May. 2016.
    [51] V. T. Haimo, “Finite time controllers,” SIAM Journal on Control and Optimization, vol. 24, no. 4, pp. 760-770, Jul. 1986.
    [52] J. Fei and Y. Chu, “Dynamic global PID sliding mode control for MEMS gyroscope using adaptive neural controller,” in Proceedings of the International Conference on Soft Computing and Intelligent Systems and International Symposium on Advanced Intelligent Systems, Sapporo, Japan, Aug. 2016, pp. 16-21.
    [53] Y. Chu, Y. Fang, and J. Fei, “Adaptive neural dynamic global PID sliding mode control for MEMS gyroscope,” International Journal of Machine Learning and Cybernetics, vol. 8, no. 5, pp. 1707-1718, Oct. 2017.
    [54] Y. Chu, J. Fei, and S. Hou, “Dynamic global proportional integral derivative sliding mode control using radial basis function neural compensator for three-phase active power filter,” Transactions of the Institute of Measurement and Control, pp. 1-11, Nov. 2017.
    [55] J. Kabziński and M. Jastrzębski, “Fuzzy modeling of LuGre-type friction,” in Proceedings of the IEEE International Conference on Cybernetics, Gdynia, Poland, Jun. 2015, pp. 422-426.
    [56] J. Kabziński, and M. Jastrzębski, “Fuzzy modeling of complex, multi-source, dynamic friction,” in Proceedings of the 25th International Conference on Information, Communication and Automation Technologies, Sarajevo, Bosnia Herzegovina, Oct. 2015, pp. 1-6.
    [57] J. Matusko, I. Petrovic, and N. Peric, “Neural network based tire/road friction force estimation,” Engineering Applications of Artificial Intelligence, vol. 21, no. 3, pp. 442-456, Apr. 2008.
    [58] S. I. Han and K. S. Lee, “Robust friction state observer and recurrent fuzzy neural network design for dynamic friction compensation with backstepping control,” Mechatronics, vol. 20, no. 3, pp. 384-401, Apr. 2010.
    [59] N. Hirose and R. Tajima, “Modeling of rolling friction by recurrent neural network using LSTM,” in Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, Jun. 2017, pp. 6471-6478.
    [60] M. Jastrzębski, J. Kabziński, and P. Mosiołek, “Adaptive and robust motion control in presence of LuGre-type friction,” in Proceedings of the International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, Aug. 2017, pp. 113-118.
    [61] W. H. Chen, D. J. Balance, P. J. Gawthrop, and J. O’Reilly, “A nonlinear disturbance observer for robotic manipulators,” IEEE Transactions on Industrial Electronics, vol. 47, no. 4, pp. 932-938, Aug. 2000.
    [62] W. H. Chen, “Disturbance observer based control for nonlinear systems,” IEEE/ASME Transactions on Mechatronics, vol. 9, no. 4, pp. 706-710, Dec. 2004.
    [63] J. Yang, S. Li and X. Yu, “Sliding-mode control for systems with mismatched uncertainties via a disturbance observer,” IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 160-169, Jan. 2013.
    [64] S. Mukhopadhyay and K. S. Narendra, “Disturbance rejection in nonlinear systems using neural networks,” IEEE Transactions on Neural Networks, vol. 4, no. 1, pp. 63-72, Jan. 1993.
    [65] A. K. Ghosh and D. L. Lubkeman, “The classification of power system disturbance waveforms using a neural network approach,” in Proceedings of the IEEE/PES Transmission and Distribution Conference, Chicago, IL, USA, Apr. 1994, pp. 323-329.
    [66] J. Hu, L. Liu, Y. G. Wang, and Z. Xie, “Precision motion control of a small launching platform with disturbance compensation using neural networks,” International Journal of Adaptive Control and Signal Processing, vol. 31, no. 7, pp. 971-984, Jul. 2017.
    [67] A. Rojko and K. Jezernik, “Sliding mode control of direct drive robot using fuzzy disturbance estimation,” in Proceedings of the Annual Conference of the IEEE Industrial Electronics Society, Denver, CO, USA, Dec. 2001, pp. 335-340.
    [68] A. Rojko and K. Jezernik, “Sliding-mode motion controller with adaptive fuzzy disturbance estimation,” IEEE Transactions on Industrial Electronics, vol. 51, no. 5, pp. 963-971, Nov. 2004.
    [69] P. Selvaraj, R. Sakthivel, O. M. Kwon, and M. Muslim, “Disturbance rejection of interval type-2 fuzzy systems based on equivalence-input-disturbance approach,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 139, no. 10, pp. 101006, Jun. 2017.
    [70] J. Huang, M. Negnevitsky, and D. T. Nguyen, “A neural-fuzzy classifier for recognition of power quality disturbances,” IEEE Transactions on Power Delivery, vol. 17, no. 2, pp. 609-616, Apr. 2002.
    [71] N. Wang and M. J. Er, “Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances,” IEEE Transactions on Control Systems Technology, vol. 23, no. 3, pp. 991-1002, May. 2015.
    [72] S. Wen, M. Z. Q. Chen, Z. Zeng, T. Huang, and C. Li, “Adaptive neural-fuzzy sliding-mode fault-tolerant control for uncertain nonlinear systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 8, pp. 2268-2278, Aug. 2017.
    [73] J. A. Burns and G. M. Whitesides, “Feed-forward neural networks in chemistry: mathematical systems for classification and pattern recognition,” Chemical Reviews, vol. 93, no. 8, pp. 2583-2601, Dec. 1993.
    [74] Z. Guo, W. Zhao, H. Lu, and J. Wang, “Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model,” Renewable Energy, vol. 37, no. 1, pp. 241-249, Jan. 2012.
    [75] R. Taormina, K. W. Chau, and R. Sethi, “Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon,” Engineering Applications of Artificial Intelligence, vol. 25, no. 8, pp. 1670-1676, Dec. 2012.
    [76] C. C. Ku and K. Y. Lee, “Diagonal recurrent neural networks for dynamic systems control,” IEEE Transactions on Neural Networks, vol. 6, no. 1, pp. 144-156, Jan. 1995.
    [77] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681, Nov. 1997.
    [78] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61, pp. 85-117, Jan. 2015.
    [79] C. F. Juang and C. T. Lin, “A recurrent self-organizing neural fuzzy inference network,” IEEE Transactions on Neural Networks, vol. 10, no. 4, pp. 828-845, Jul. 1999.
    [80] R. J. Wai, “Total sliding-mode controller for PM synchronous servo motor drive using recurrent fuzzy neural network,” IEEE Transactions on Industrial Electronics, vol. 48, no. 8, pp. 926-944, Oct. 2001.
    [81] L. Sheng, G. Xiaojie, and Z. Lanyong, “Robust adaptive backstepping sliding mode control for six-phase permanent magnet synchronous motor using recurrent wavelet fuzzy neural network,” IEEE Access, vol. 5, pp. 14502-14515, Jun. 2017.
    [82] L. Lu, Z. Chen, B. Yao, and Q. Wang, “Desired compensation adaptive robust control of a linear-motor-driven precision industrial gantry with improved cogging force compensation,” IEEE/ASME Transactions on Mechatronics, vol. 13, no. 6, pp. 617-624, Dec. 2008.
    [83] B. Yao, C. Hu, L. Lu, and Q. Wang, “Adaptive robust precision motion control of a high-speed industrial gantry with cogging force compensations,” IEEE Transactions on Control Systems Technology, vol. 19, no. 5, pp. 1149-1159, Sep. 2011.
    [84] 蔡維哲,基於適應性非線性滑模控制之循跡精度改善研究,碩士論文,國立成功大學,電機工程學系,台灣,2017。
    [85] R. H. Brown, S. C. Schneider, and M. G. Mulligan, “Analysis of algorithms for velocity estimation from discrete position versus time data,” IEEE Transactions on Industrial Electronics, vol. 39, no. 1, pp. 11-19, Feb. 1992.
    [86] 劉叡明,伺服馬達低轉速控制改善之研究,碩士論文,國立成功大學,電機工程學系,台灣,2008。
    [87] S. M. Yang and S. J. Ke, “Performance evaluation of a velocity observer for accurate velocity estimation of servo motor drives,” IEEE Transactions on Industry Applications, vol. 36, no. 1, pp. 98-104, Feb. 2000.
    [88] P. B. Schmidt and R. D. Lorenz, “Design principles and implementation of acceleration feedback to improve performance of DC drives,” IEEE Transactions on Industry Applications, vol. 28, no. 3, pp. 594-599, Jun. 1992.
    [89] R. D. Lorenz and K. V. Patten, “High resolution velocity estimation for all digital, AC servo drives,” in Proceedings of the Industry Applications Society Annual Meeting, Conference Record of the 1988 IEEE, Pittsburgh, PA, USA, Oct. 1988, pp. 363-368.
    [90] R. J. E. Merry, M. J. G. van de Molengraft, and M. Steinbuch, “Velocity and acceleration estimation for optical incremental encoders,” Mechatronics, vol. 20, no. 1, pp. 20-26, Feb. 2010.
    [91] C. M. Wen and M. Y. Cheng, “Contouring accuracy improvement of a piezo-actuated micro motion stage based on fuzzy cerebellar model articulation controller,” Control Engineering Practice, vol. 20, no. 11, pp. 1195-1205, Nov. 2012.
    [92] C. M. Wen and M. Y. Cheng, “Development of a recurrent fuzzy CMAC with adjustable input space quantization and self-tuning learning rate for control of a dual-axis piezoelectric actuated micromotion stage,” IEEE Transactions on Industrial Electronics, vol. 60, no. 11, pp. 5105-5115, Nov. 2013.
    [93] 溫峻明,小腦模型控制器之研究及其於壓電致動微運動平台控制之應用,博士論文,國立成功大學電機工程學系,2013。
    [94] J. G. Bollinger and N. A. Duffie, Computer Control of Machines and Processes. Boston, USA: Addison Wesley, 1988.
    [95] D. M. Tsay and C. O. Huey, “Application of rational B-Splines to the synthesis of cam-follower motion programs,” ASME Journal of Mechanical Design, vol. 115, no. 3, pp. 621-626, Sep. 1993.
    [96] D. M. Tsay and C. O. Huey, “Improving the geometry design of cylindrical cams using nonparametric rational B-splines,” Computer-Aided Design, vol. 28, no. 1, pp. 5-15, Jan. 1996.
    [97] 李政謙,基於改良式切線輪廓誤差之伺服控制器設計與實現,碩士論文,國立成功大學電機工程學系,2004。
    [98] M. C. Tsai , M. Y. Cheng, K. F. Lin, and N. C. Tsai. “On acceleration/ deceleration before interpolation for CNC motion control,” in Proceedings of the IEEE International Conference on Mechatronics, Taipei, Taiwan, Jul. 2005, pp. 382-387.
    [99] S. H. Suh, Acceleration and Deceleration. London, UK: Springer, 2008.
    [100] 唐佩忠,CNC伺服參數調整專家系統,vol. 2,台灣,1993。
    [101] 廖兼賢,以離散位置資訊做速度與加速度估測之研究,碩士論文,國立成功大學,電機工程學系,台灣,2004。
    [102] C. T. Johnson and R. D. Lorenz, “Experimental identification of friction and its compensation in precise, position controlled mechanisms,” IEEE Transactions on Industry Applications, vol. 28, no. 6, pp. 1392-1398, Nov.-Dec. 1992.
    [103] 吳仁哲,伺服控制系統之摩擦力與干擾補償研究,碩士論文,國立成功大學,電機工程學系,台灣,2009。
    [104] J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation controller (CMAC),”ASME Journal of Dynamic Systems, Measurement, and Control, vol. 97, no. 3, pp. 220-227, Sep. 1975.
    [105] J. S. Albus, “Data storage in the cerebellar model articulation controller (CMAC),”ASME Journal of Dynamic Systems, Measurement, and Control, vol. 97, no. 3, pp. 228-233, Sep. 1975.
    [106] W. T. Miller, F. H. Glanz, and L. G. Kraft, “Application of a general learning algorithm to the control of robotic manipulators,”The International Journal of Robotics Research, vol. 6, no. 2, pp. 84-98, Jun. 1987.
    [107] F. Marcassa and R. Oboe, “Disturbance rejection in hard disk drives with multi-rate estimated state feedback,”Control Engineering Practice, vol. 12, no. 11, pp. 1409-1421, Nov. 2004.
    [108] C. Guo, Z. Ye, Z. Sun, P. Sarkar, and M. Jamshidi, “A hybrid fuzzy cerebellar model articulation controller based autonomous controller,”Computers and Electrical Engineering, vol. 28, no. 1, pp. 1-16, Jan. 2002.
    [109] F. O. Rodriguez, W. Yu, and M. A. Moreno-Armendariz, “Nonlinear systems identification via two types of recurrent fuzzy CMAC,”Neural Processing Letters, vol. 28, no. 1, pp. 49-62, Aug. 2008.
    [110] A. Shafiekhani, M. J. Mahjoob, and M. Akraminia, “Design and implementation of an adaptive critic-based neuro-fuzzy controller on an unmanned bicycle,” Mechatronics, vol. 28, pp. 115-123, Jun. 2015.
    [111] D. A. Haessig and B. Friedland, “On the modeling and simulation of friction,” in Proceedings of the American Control Conference, San Diego, CA, USA, May. 1990, pp. 1256-1261.
    [112] J. Kabziński and M. Jastrzębski, “Practical implementation of adaptive friction compensation based on partially identified LuGre model,” in Proceedings of the International Conference On Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, pp. 699-704, Sep. 2014.
    [113] D. Schindele and H. Aschemann, “Adaptive friction compensation based on the LuGre model for a pneumatic rodless cylinder,”in Proceedings of the IEEE Annual Conference on Industrial Electronics, Porto, Portugal, Nov. 2009, pp. 1432-1437.
    [114] 林銘湧,精密伺服控制系統之摩擦力分析及補償研究,碩士論文,逢甲大學,自動控制工程系,台灣,2000。
    [115] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: a survey,” IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 2-22, Feb. 1993.
    [116] Y. Hong, J. Huang, and Y. Xu, “On an output feedback finite-time stabilization problem,” IEEE Transactions on Automatic Control, vol. 46, no. 2, pp. 305-309, Feb. 2001.
    [117] F. J. Lin, S. Y. Chen, K. K. Shyu, and Y. H. Liu, “Intelligent complementary sliding-mode control for LUSMs-based X-Y-Ө motion control stage,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency, vol. 57, no. 7, pp. 1626-1640, Jul. 2010.
    [118] F. F. M. El-Sousy, “Adaptive dynamic sliding-mode control system using recurrent RBFN for high-performance induction motor servo drive,” IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 1922-1936, Nov. 2013.
    [119] C. T. Chu and H. K. Chiang, “Adaptive sliding mode recurrent gauss basis function neural network estimation in magnetic bearing system,” Information Technology Journal, vol. 13, no. 6, pp. 1664-1667, Jul. 2014.
    [120] Y. Y. Lin, J. Y. Chang, and C. T. Lin, “A TSK-type-based self-evolving compensatory interval type-2 fuzzy neural network (TSCIT2FNN) and its applications,” IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 447-459, Jan. 2014.
    [121] F. J. Lin, K. C. Lu, T. H. Ke, B. H. Yang, and Y. R. Chang, “Reactive power control of three-phase grid-connected PV system during grid faults using Takagi–Sugeno–Kang probabilistic fuzzy neural network control,” IEEE Transactions on Industrial Electronics, vol. 62, no. 9, pp. 5516-5528, Sep. 2015.
    [122] C. Yang, Z. Deng, K. S. Choi, and S. Wang, “Takagi–Sugeno–Kang transfer learning fuzzy logic system for the adaptive recognition of epileptic electroencephalogram signals,” IEEE Transactions on Fuzzy Systems, vol. 24, no. 5, pp. 1079-1094, Oct. 2016.
    [123] G. Tao, Adaptive Control Design and Analysis. New York, USA: John Wiley & Sons, 2003.
    [124] 工研院,IMP-2硬體使用手冊,2010。
    [125] 台達電,台達ASDA-A3系列伺服系統應用技術手冊,2017。
    [126] F. A. Bender, V. Lampaert, and J. Swevers, “The generalized maxwell-slip model: A novel model for friction simulation and compensation,” IEEE Transactions on Automatic Control, vol. 50, no. 11, pp. 1883-1887, Nov. 2005.
    [127] C. C. Casanova, E. R. D. Pieri, U. F. Moreno, and E. B. Castelan, “Friction compensation in flexible joints robot with GMS model: identification, control and experimental results,” in Proceedings of the IFAC Proceedings Volumes, Seoul, Korea, Jul. 2008, pp. 11793-11798.
    [128] T. Piatkowski, “GMS friction model approximation,” Mechanism and Machine Theory, vol. 75, pp. 1-11, May. 2014.

    無法下載圖示 校內:2023-06-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE