簡易檢索 / 詳目顯示

研究生: 謝文哲
Hsieh, Wen-Tse
論文名稱: 矽基板磊晶成長碳化矽與矽鍺碳薄膜及應用於半導體元件之研究
The Study of Epitaxial Growth SiC and SiGeC Thinfilms on Silicon Substrate and Their Applications for Semiconductor Devices
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 89
中文關鍵詞: 矽化鍺光電晶體多孔矽碳化矽矽鍺碳
外文關鍵詞: silicon carbide, SiGeC, silicon germanium, porous silicon, photo transistor
相關次數: 點閱:102下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽晶圓成熟的技術與低廉的價格,造就了蓬勃的消費性電子產業,但在一些如高溫、高速等特殊的應用領域上,相關材料的基板價格仍居高不下,為降低生產的成本,如何於矽晶圓上成長高品質異質接面薄膜變成為另一種解決之道。
    本論文中對如何於矽晶圓上成長碳化矽與矽鍺碳薄膜上分別提出改良方式,碳化矽與矽基板間的20%晶格常數不匹配,造成碳化矽/矽介面間的缺陷,導致漏電流的提高,利用如海綿般具有彈性的多孔矽結構可大幅降低了兩者間之應力,減少漏電流。作者以此碳化矽/多孔矽薄膜成長技術為基礎,利用快速升溫化學氣相沉積,成功的製作出pn接面二極體、p-i-n光二極體和MSM結構光導體等不同結構之元件,在200℃高溫環境下,不論是PN接面二極體的反向崩潰電壓、p-i-n光二極體的光增益及量子效率、MSM結構光導體的明暗電流比,均較直接成長於矽晶圓之碳化矽元件佳,由此可證實此異質結構薄膜的品質及可行性。
    鍺有能隙小及較高的載子移動率的特性,矽化鍺易成長於矽基板且其中鍺的濃度可隨所需能隙大小來調整的特性,在光電和高速元件領域成為一熱門材料,鍺與矽兩者晶格差異雖只有4.17%,但鍺濃度的高低,限制了矽化鍺薄膜的臨界厚度而影響其應用,本論文中利用加入晶格常數較小的碳原子,藉以消除矽化鍺薄膜的內應力,成長高品質的矽鍺碳薄膜,首先分別利用丙烷(C3H8)及Methysilane (SiH3CH3)兩種氣體作為碳原子源,比較探討薄膜的成長方式及特性,最後採用價格非常低廉的丙烷作為碳原子源,來改善矽化鍺/矽間晶格的不匹配現象,並利用此薄膜成長方法配合快速昇溫化學氣相沈積系統製作pn異質結構二極體,並從高溫環境驗證了此薄膜具不錯之品質。
    本論文中吾人成功的分別利用兩種方法分別在矽基板上成長碳化矽與矽鍺碳薄膜,並驗證了此薄膜的品質,利用在多孔矽基板上成長單晶碳化矽具有取代昂貴的碳化矽晶圓之潛力,而在矽晶圓上成長矽鍺碳薄膜,更可提升計晶圓未來在更高速元件及在近紅外光電元件方面的應用之潛能。

    “Si-based” technologies have been well established in the past fifty years and the price of silicon wafer is cheaper than any other materials. Additionally, the wafers of specific materials for application in harsh environments, such as high temperature, high-speed environments etc. still very expensive. In this dissertation, the author has presented the methods to growth b-SiC and c-SiGeC thin films on Si wafer for reduction the cost and compatible with Si-Based VLSI technology.
    The lattice mismatch (20%) and thermal expansion coefficient mismatch (8%) between SiC and Si generates a large density of traps, which degrade the performance of the device at high temperature. Porous silicon (PS) with the characteristics of soft and flexibility will relax the stress between SiC and Si interface. The PS layers are previously formed on the silicon substrate by an electrochemical anodization method. The b-SiC films which grown on PS substrate are characterized by XRD, TEM, SEM. Using the developed technology, three b-SiC thin film devices including b-SiC/Si pn diode, b-SiC/Si p-i-n photodiode and b-SiC/Si MSM photoconductor, have been successfully fabricated on porous silicon substrate. Experimental results exhibit that the three developed SiC devices on porous silicon substrate are more suitable for high-temperature applications than that grown on silicon substrate.
    SiGe with advantage of narrow, variable bandgap and compatibility with IC process, it becomes a very important material in the applications of high-speed devices and photo-electronic device. However, the compressive strain resulting from SiGe and Si interface lattice mismatch limits the advanced development of using SiGe to design and fabricate these devices. In this dissertation, we describe the growth of pseudo-morphic SiGeC thin film with the incorporation of some carbon atoms to compensate the compressive strain. We have succeeded in depositing crystal SiGeC thin film on Si wafer with C3H8 and SiH3CH3 as carbon sources by RTCVD system. The as-grown SiGeC films were characterized by XRD, FTIR, and SEM. Additionally, we used the SiGeC with C3H8 as carbon source to prepare the p-SiGeC/n-Si heterojunction diode and compare to that with C2H4 as carbon source. More Si atoms contained and less lattice misfit in SiGeC/Si interface are attributed to the improvement in high temperature I/V characteristics.
    Two methods of epitaxial growth b-SiC and c-SiGe thin films on silicon substrate were demonstrated successfully. Fabrication of SiC device on Si wafer with PS layer can reduce the cost thus extending for high-temperature electronic devices applications. The SiGeC thin films grown on Si wafer compensated by C3H8 as carbon source can be more economical than the traditional method.

    中文摘要 (1) 各章中文提要 (2) 誌謝 (14) 目錄 (15) Table Captions (17) Figure Captions (18) Abstract (21) Chapter 1 Introduction 1 1-1 Background 1 1-2 Preface of this Dissertation 3 Chapter 2 Preparation and Characterization of b-SiC Thin Films on Porous Si Substrate 8 2-1 Introduction 8 2-2 Porous silicon formation 9 2-3 Preparation process for the b-SiC thin films on porous Si substrate 11 2-4 Characterization of the developed b-SiC thin films 12 2-5 Conclusion 13 Chapter 3 b-SiC Thin-Film Devices Fabricated on Porous Si Substrates 26 3-1 Introduction 26 3-2 To improve b-SiC pn diode high-temperature characteristics with porous silicon layer 27 3-3 High temperature b-SiC/Si p-i-n optoelectronic devices on porous silicon substrate 31 3-4 Using porous silicon as semi-insulating substrate for b-SiC high temperature optical-sensing devices 35 3-5 Conclusion 39 Chapter 4 Preparation and Characterization of c-SiGeC Thin Films on Si Substrate with Propane and MethySilane as Carbon Source 52 4-1 Introduction 52 4-2 Preparation and characterization of c-SiGeC thin films on Si Substrate with methysilane as carbon source 53 4-3 Preparation and characterization of c-SiGeC thin films on Si substrate with propane as carbon source 56 4-4 Conclusion 58 Chapter 5 c-SiGeC Thin-Film Device Fabricated on Si Substrate with Propane as Carbon Source 73 5-1 Introduction 73 5-2 Experimental 74 5-3 Results and Discussions 75 5-4 Conclusion 77 Chapter 6 Conclusions and Prospects 84 6-1 Conclusions 84 6-2 Prospects 85 Appendix A Author’s Resume Appendix B Author’s Related Publications

    Chapter 1
    [1] J. D. Hwang, Y. K. Fang, Y. J. Song, and D. N. Yaung,“Epitaxial growth and electrical characteristics of b-SiC on Si by low-pressure rapid thermal chemical vapor deposition,” Jpn. J. Appl. Phys., vol.34, pp. 1447-1450, 1995.
    [2] A. J. Steckel, J. P. Li, “Epitaxial Growth of b-SiC on Si by RTCVD with C3H8 and CH4,” IEEE Trans. on Electron Devices, vol.39, no.1, pp.64-74, 1992.
    [3] J. A. Powell, L. G. Matus, and M. A. Kuczmarski, “Growth and characteristics of cubic single-crystal SiC films on Si,” J. Electrochem. Soc., vol.134, no.6, pp.1558-1565, 1987.
    [4] S. Nishino, H. Suhara, H. Ono, and Matsunami, “Epitaxial growth and electric characteristics of cubic SiC on silicon,” J. Appl. Phys., vol.61, no.10, pp.4889-4893, 1987.
    [5] P. Liaw, and R. F. Davis, “Epitaxial growth and characterization of b-SiC thin films,” J. Electrochem. Soc., vol.132, no.3, pp.642-648, 1985.
    [6] S. M. Sze, Modern Semiconductor Device Physics, John Wiley & Sons, Inc., New York, pp.537-542, 1998.
    [7] P. A. Ivanov, and V. E. Chelnokov, “Recent development in SiC single crystal electronics,” Semicond. Sci. Technol. vol.7, pp.863-880, 1992.
    [8] Kuen-Hsien Wu, Yean-Kuen Fang, Jing-Hong Zhou, and Jyh-Jier Ho, “b-SiC Photodiodes Prepared on Silicon Substrates by Rapid Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys., vol.36, no.8, pp.5151-5155, 1997.
    [9] Kuen-Hsien Wu, Yean-Kuen Fang, Jen-Yeu Fang and Jun-Dar Hwang, “The Growth and Characterization of Silicon/Silicon-Carbide Heteroepitaxial Films on Silicon Substrates by Rapid Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys., vol.35, no.7, pp.3836-3840, 1996.
    [10] Z. Liu, B. Q. Zong, and Z. Lin, “Diamond growth on porous silicon by hot-filament chemical vapor deposition,” Thin Solid Film, vol.254, pp.3-6, 1995.
    [11] T. L. Lin, L. Sadwich, K. L. Wang, Y. C. Kao, R. Hull, C. W. Nieh, D. N. Jamieson, and J. K. Liu, “Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon,” Appl. Phys. Lett., vol.51, no.14, pp. 814-816, 1987.
    [12] Y. C. Kao, K. L. Wang, B. J. Wu, T. L. Lin, C. W. Nieh, D. Jamieson, and . Bai, “Molecular beam epitaxial growth of CoSi2 on porous Si,” Appl. Phys. Lett., vol.51, no.30, pp.1809-1811, 1987.
    [13] D. L. Harame, J. H. Comfort; J. D. Cressler; E. F. Crabbe, Sun, J.Y.-C. Sun, B.,S.,Meyerson, T. Tice, “Si/SiGe epitaxial-base transistors. Part I. Materials, physics, and circuits,” IEEE Trans. on Electron Devices, vol. 42 no.3, pp.455-468, 1995.
    [14] D. C. Ahlgren, M. Gilbert, D. Greenberg, S. J. Jeng, J. Malinowski, D. Nguyen-Ngoc, K. Schonenberg, K. Stein, R. Groves, K. Walter, G. Hueckel, D. Colavito, G. Freeman, D. Sunderland, D. L. Harame, and B. Meyerson “Manufacturability demonstration of an integrated SiGe HBT technology for the analog and wireless marketplace,” IEDM Tech. Dig, pp.859-862, 1996.
    [15] G. Freeman, D. Ahlfren, D. R. Greenberg, R. Groves, F. Huang, G. Hugo, B. Jagannathan, S. J. Jeng, J. Johnson, K. Schonenberg, K. Stein, R. Volant, and S. Subbanna, “A 0.18mm 90GHz fT SiGe HBT BiCMOS, ASIC-compatible, copper interconnect technology for RF and microwave applications”, IEDM Tech. Dig., pp.569-572, 1999.
    [16] S. A. St.Onge, D. L. Harame, J. S. Dunn, S. Subbanna, D. C. Ahlgren, G. Freeman, B. Jagannathan, S. J. Jeng, K. Schonenberg, K. Stein, R. Grove, D. Coolbaugh, N. Feilchenfeld, P. Geiss, M. Gordon, P.Gray, D. Hershberger, S. Kilpatrick, R. Johnson A. Joseph L. Lanzerotti, J. Malinowski, B. Orner, M. Zierak, “A 0.24 mm SiGe BiCMOS mixed signal RF production technology featuring at 47 GHz ft HBT and 0.18 mm Leff CMOS,” IEEE BCTM Proc., pp.117-120, 1999.
    [17] J.C. Bean, “Silicon-Based Semiconductor Heterostructure Colu-mn-IV Bandgap Engineering”, Proc. IEEE 80, p.571, 1992.
    [18] H. Presting, H. Kibbel, M. Jaros, R.M. Turton, U. Menezigar, G, Abstreiter, H.G. Grimmeiss, “Ultrathin Simgen Strained Layer Superlattices-A Step Towards Si Optoelectronics”, Semicond. Sci. Technol., 1, p.1127, 1992.
    [19] W. T. Hsieh, Y. K. Fang, W. J. Lee, K. H. Wu, J. J. Ho, K. H. Chen and S. Y. Huang, “An a-SiGe:H Phototransistor Integrated with a Pd Film on Glass Substrate for Hydrogen Monitoring,” IEEE Trans. on Electron Devices, vol.47, no.5, pp.939-943, 2000.
    [20] J.L. Regolini, F. Gisbert, G. Dolino and P. Boucaud, “Growth and characterization of strain compensated Si1-x-yGexCy epitaxil layers,” Materials Letters, 18, pp.57-60, 1993.
    [21] J.L. Regolini, S. Bodnar, J.C. Oberlin, and F. Ferrieu, “Strain compensated heterostructure in the Si1-x-yGexCy ternary system,” J. Vac. Sci. Technol., A 12(4), Jul/Aug, pp.1015-1019, 1994.
    [22] F. Chen, B. A. Orner, D. Guerin, A. Khan, P. R. Berger, S. Ismat Shan, and J. Kolodzey, “Current Transport Characteristics of SiGeC/Si Hetrojunction Diode,” IEEE Electron Device Lett. vol. 17, no. 12, pp. 589-591, 1996.
    [23] P. Warren, M. Dutoit, P. Boucaud, J. –M Lourtioz, and F. H. Julien, “RTCVD growth and characterization of SiGeC multi-quantum well,” Thin Solid Films, 294, pp.125-128, 1997.
    [24] W. T. Hsieh, Y. K. Fang, W. J Lee, C. W. Ho, K. H. Wu, J. J. Ho, and J. D. Hwang “Improvement of β-SiC / Si pn diode high temperature characteristics with porous silicon layer,” IEE Electronics Letters, vol.36, no.1, pp.88-87, 2000.
    [25] Wen-Tse Hsieh, Yean-Kuen Fang, W.J. Lee, Chi-Wei Ho, Kuen-Hsien Wu, and Jyh-Jier Ho, “To Suppress Dark Current of High Temperature b-SiC/Si Optoelectronic Devices with Porous Silicon Substrate,” IEE Electronics Letters, vol.36, no.22, pp.1869-1870, 2000.
    [26] W. T. Hsieh, Y. K. Fang, K. H. Wu, W. J. lee, J. J. Ho, And C. W. Ho, “Using Porous Silicon As Semi-Insulating Substrate for β-SiC High Temperature Optical-Sensing Devices,” IEEE Trans on Electron Devices, vol.48, no.2, pp.801-803, 2001.
    [27] W. T. Hsieh, Y. K. Fang, S. F. Ting, Y. S. Tsair, W. J. Lee, and H.P.Wang, “Improving High Temperature Characteristic of SiGeC/Si Hetrojunction Diode with Propane Carbon Source,” to be publish on Solid-State Electronic, 2002.

    Chapter 2
    [1] Gray L. Harris, Properties of silicon carbide, INSPEC, the Institution of Electrical Engineers, London, United Kingdom, 1995.
    [2] A. Addamiano and P. H. Klein, “Chemically-formed buffer layers for growth of cubic silicon carbide on silicon single crystals,” J. Crystal Growth, vol.70, pp.291-294, 1984.
    [3] P. Liaw and R. F. Davis, “Epitaxial growth and characterization of b-SiC thin films,” J. Electrochem. Soc., vol.132, no.3, pp.642-648, 1985.
    [4] S. Nishino, H. Suhara, H. Ono and H. Matsunami, “Epitaxial growth and Electric characteristic of cubic-SiC on silicon,” J. Appl. Phys., vol.61, no.10, pp.4889-4893, 1987.
    [5] J. D. Hwang, Y. K. Fang, Y. J. Song, and D. N. Yaung, “Epitaxial growth and electrical characteristics of b-SiC on Si by low-pressure rapid thermal chemical vapor deposition,” Jpn. J. Appl. Phys., vol.34, pp. 1447-1450, 1995.
    [6] A. J. Steckel, J. P. Li, “Epitaxial Growth of b-SiC on Si by RTCVD with C3H8 and CH4,” IEEE Trans. Electron Devices, vol.39, no.1, pp.64-74, 1992.
    [7] J. D. Hwang, Y. K. Fang, K. H. Wu, and S. M. Chou, “Improving Breakdown Voltage of SiC/Si Heterojunction with Graded Structure by Rapid Thermal CVD Technology,” IEEE Trans. Electron Devices, pp.2029-2031, vol.44, no11, 1997
    [8] V. Lehmann, U. Gosele, "Porous Silicon Formation: A Quantum Wire Effect", App. Phys. Lett., vol.58, pp.856-858, 1991.
    [9] Z. Liu, B. Q. Zong, and Z. Lin, “Diamond growth on porous silicon by hot-filament chemical vapor deposition,” Thin Solid Film, vol.254, pp.3-6, 1995.
    [10] T. L. Lin, L. Sadwich, K. L. Wang, Y. C. Kao, R. Hull, C. W. Nieh, D. N. Jamieson, and J. K. Liu, “Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon,” Appl. Phys. Lett., vol.51, no.14, pp. 814-816, 1987.
    [11] Y. C. Kao, K. L. Wang, B. J. Wu, T. L. Lin, C. W. Nieh, D. Jamieson, and . Bai, “Molecular beam epitaxial growth of CoSi2 on porous Si,” Appl. Phys. Lett., vol.51, no.30, pp.1809-1811, 1987.
    [12] K. Maehashi, M. Sato, S. Hasegawa, H. Nakashima, T. Ito, and HIRIKI, A. Hiriki, “Initial stages of GaAs molecular beam epitaxy growth on porous Si”, Jpn. J. Appl. Phys, 30, pp. L683-L685, 1991.

    Chapter 3
    [1] S. M. Sze, Physics of Semiconductor Device, 2nd ed. New York: Wiley, 1981.
    [2] Gray L. Harris, Properties of silicon carbide, INSPEC, the Institution of Electrical Engineers, London, United Kingdom, 1995.
    [3] B. Casady and R. W. Johnson, “Status of silicon carbide (SIC) as a wide-bandgap semiconductor for high-temperature application: A review,” Solid-State Electron., vol. 39, no. 10, pp.1409-1422, 1996.
    [4] R. B. Campbell and H. C. Chang, “Detection of ultraviolet radiation using silicon carbide p-n junction”, Solid-State Electronics, vol. 10, pp.949-953, 1967.
    [5] D. M. Brown, E. T. Downey, M. Ghezzo, J. W. Kethchmer, R. J. Saia, Y. S. Liu, J. A. Edmond, G. Gati, J. M. Pimbley and W. E. Schneider, “Silicon carbide UV photodiodes”, IEEE Trans. Electron Device, vol. 40, no. 2, pp. 325-333, Feb. 1993.
    [6] L. Hoffmann, G. Ziegler, D. Theis and C. Weyrich, “Silicon carbide blue light emitting diodes with improved external quantum efficiency”, J. Appl. Phys., vol. 53, no. 10, pp.6962-6967, Oct. 1982.
    [7] K. H. Wu, Y. K. Fang, J. J. Ho, W. T. Hsieh, W. H. Chang, and J. D. Hwang, “A high optical-gain b-SiC bulk-barrier phototransistor for high-temperature application”, IEEE Photonics Technology Letters, vol. 10, no. 11, pp.1611-1613, Nov. 1998.
    [8] J. D. Hwang, Y. K. Fang, Y. J. Song, and D. N. Yaung, “Epitaxial growth and electrical characteristics of b-SiC on Si by low-pressure rapid thermal chemical vapor deposition,” Jpn. J. Appl. Phys., vol.34, pp.1447-1450, 1995.
    [9] T. L. Lin, L. Sadwich, K. L. Wang, Y. C. Kao, R. Hull, C. W. Nieh, D. N. Jamieson, and J. K. Liu, “Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon,” Appl. Phys. Lett., vol.51 (11), no.14, pp. 814-816, 1987.
    [10] K. Maehashi, M. Sato, S. Hasegawa, H. Nakashima, T. Ito and A. Hiraki, “ Initial stage of GaAs molecular beam epitaxy growth on porous Si”, Jpn. J. of Applied Physics, vol. 30, no. 4B, pp. L683-L685, April, 1991.
    [11] R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms”, J. Appl. Phys., vol.71, no.8, p.R1, 1992.
    [12] V. Lemamn, U. Gosele, “Porous Silicon Formation-A Quantum Wire Effect”, Applied Physic Letter., vol. 58, p.856, 1991

    Chapter 4
    [1] G. Freeman, D. Ahlfren, D. R. Greenberg, R. Groves, F. Huang, G. Hugo, B. Jagannathan, S. J. Jeng, J. Johnson, K. Schonenberg, K. Stein, R. Volant, and S. Subbanna, “A 0.18mm 90GHz fT SiGe HBT BiCMOS, ASIC-compatible, copper interconnect technology for RF and microwave applications”, IEDM Tech. Dig., pp.569-572, 1999.
    [2] S. A. St.Onge, D. L. Harame, J. S. Dunn, S. Subbanna, D. C. Ahlgren, G. Freeman, B. Jagannathan, S. J. Jeng, K. Schonenberg, K. Stein, R. Grove, D. Coolbaugh, N. Feilchenfeld, P. Geiss, M. Gordon, P.Gray, D. Hershberger, S. Kilpatrick, R. Johnson A. Joseph L. Lanzerotti, J. Malinowski, B. Orner, M. Zierak, “A 0.24 mm SiGe BiCMOS mixed signal RF production technology featuring at 47 GHz ft HBT and 0.18 mm Leff CMOS,” IEEE BCTM Proc., pp.117-120, 1999.
    [3] C. M. Snowden, “Compound interest,” IEE Review, pp15-20, 2002.
    [4] J.C. Bean, “Silicon-Based Semiconductor Heterostructure Colu-mn-IV Bandgap Engineering”, Proc. IEEE 80, p.571, 1992.
    [5] H. Presting, H. Kibbel, M. Jaros, R.M. Turton, U. Menezigar, G, Abstreiter, H.G. Grimmeiss, “Ultrathin Simgen Strained Layer Superlattices-A Step Towards Si Optoelectronics”, Semicond. Sci. Technol., 1, p.1127, 1992.
    [6] W. T. Hsieh, Y. K. Fang, W. J. Lee, K. H. Wu, J. J. Ho, K. H. Chen and S. Y. Huang, “An a-SiGe:H Phototransistor Integrated with a Pd Film on Glass Substrate for Hydrogen Monitoring,” IEEE Trans. on Electron Devices, vol.47, no.5, pp.939-943, 2000.
    [7] J.L. Regolini, F. Gisbert, G. Dolino and P. Boucaud, “Growth and characterization of strain compensated Si1-x-yGexCy epitaxil layers,” Materials Letters, 18, pp.57-60, 1993.
    [8] J.L. Regolini, S. Bodnar, J.C. Oberlin, and F. Ferrieu, “Strain compensated heterostructure in the Si1-x-yGexCy ternary system,” J. Vac. Sci. Technol., A 12(4), Jul/Aug, pp.1015-1019, 1994.
    [9] F. Chen, B. A. Orner, D. Guerin, A. Khan, P. R. Berger, S. Ismat Shan, and J. Kolodzey, “Current Transport Characteristics of SiGeC/Si Hetrojunction Diode,” IEEE Electron Device Lett. vol.17, no. 12, pp.589-591, 1996.
    [10] P. Warren, M. Dutoit, P. Boucaud, J. –M Lourtioz, and F. H. Julien, “RTCVD growth and characterization of SiGeC multi-quantum well,” Thin Solid Films, 294, pp.125-128, 1997.
    [11] W.P. Maszara, T.Thompson, “Strain compensation by Ge in B-doped silicon epitaxial films,” Journal of Applied Physics 72(9), pp.4477-4479, 1 Nov, 1992.
    [12] S. Sego, R. J. Culbertson, A.E. Bair, T. L. Alford, “Comparison between predicted strain values using elastic theory and experimental strain values for SiGeC alloy films grown on Si(100),” Materials Chemistry and Physics, 46, pp.277-282, 1996.
    [13] G. He, M. D. Savellano and H. A. Atwater, “Synthesis of Dislocation-Free Siy(SnxC1-x)1-y Alloys by Molecular-Beam Deposition and Solid-Phase Epitaxy,” Appl. Phys. Lett., vol. 65, pp.1159-1161, 1994.

    Chapter 5
    [1] D. L. Harame, J. H. Comfort; J. D. Cressler; E. F. Crabbe, Sun, J.Y.-C. Sun, B.,S.,Meyerson, T. Tice, “Si/SiGe epitaxial-base transistors. Part I. Materials, physics, and circuits,” IEEE Trans. on Electron. Devices, vol. 42 no.3, pp.455-468, 1995.
    [2] D. C. Ahlgren, M. Gilbert, D. Greenberg, S. J. Jeng, J. Malinowski, D. Nguyen-Ngoc, K. Schonenberg, K. Stein, R. Groves, K. Walter, G. Hueckel, D. Colavito, G. Freeman, D. Sunderland, D. L. Harame, and B. Meyerson “Manufacturability demonstration of an integrated SiGe HBT technology for the analog and wireless marketplace,” IEDM Tech. Dig, pp.859-862, 1996.
    [3] G. Freeman, D. Ahlfren, D. R. Greenberg, R. Groves, F. Huang, G. Hugo, B. Jagannathan, S. J. Jeng, J. Johnson, K. Schonenberg, K. Stein, R. Volant, and S. Subbanna, “A 0.18mm 90GHz fT SiGe HBT BiCMOS, ASIC-compatible, copper interconnect technology for RF and microwave applications,” IEDM Tech. Dig., pp.569-572, 1999.
    [4] S. A. St.Onge, D. L. Harame, J. S. Dunn, S. Subbanna, D. C. Ahlgren, G. Freeman, B. Jagannathan, S. J. Jeng, K. Schonenberg, K. Stein, R. Grove, D. Coolbaugh, N. Feilchenfeld, P. Geiss, M. Gordon, P.Gray, D. Hershberger, S. Kilpatrick, R. Johnson A. Joseph L. Lanzerotti, J. Malinowski, B. Orner, M. Zierak, “A 0.24 mm SiGe BiCMOS mixed signal RF production technology featuring at 47 GHz ft HBT and 0.18 mm Leff CMOS,” IEEE BCTM Proc., pp.117-120, 1999.
    [5] F.Y. Huang, K.Sskamoto, K.L. Wang, P. Trinh, and B. Jalali, “Epitaxial SiGeC Waveguide Photodetector Grown on Si Substrate with Response in the 1.3-1.55 μm Wavelength Range,” IEEE Photonics Technology Letters, vol.9, no.2, pp.229-231, 1997.
    [6] K.L. Wang and R.P.G. Karunasiri, “SiGe/Si electronics and optoelectronics,” J. Vac. Sci. Tech. B, vol. 11, pp. 1159-1167, 1993
    [7] J.L. Regolini, F. Gisbert, G. Dolino and P. Boucaud, “Growth and characterization of strain compensated Si1-x-yGexCy epitaxil layers”, Materials Letters, 18, pp.57-60, 1993
    [8] J.L. Regolini, S. Bodnar, J.C. Oberlin, and F. Ferrieu, “Strain compensated heterostructure in the Si1-x-yGexCy ternary system,” J. Vac. Sci. Technol., A 12(4), Jul/Aug, pp.1015-1019, 1994.
    [9] J. Kolodzey, P. A. O’neil, S. Zhang, B. A. Orner, K. Roe, K. M. Unruh, C. P. Swann, M. M. Waite, and S. Ismat Shan, “Growth of germanium carbon alloys on silicon substrate by molecular beam epitaxy,” Appl. Phys. Lett., Vol. 67, pp.1865-1867, 1995.
    [10] B. A. Orner, A. Khan, D. Hits, F. Chen, K. Roe, J. Pickett, X. Shao, R. G. Wilson, P. R. Berger, and J. Kolodzey, “Optical properties of Ge1-yCy alloys,” J. Electron. Mater., vol. 25, pp.297-300, 1996.
    [11] F. Chen, B. A. Orner, D. Guerin, A. Khan, P. R. Berger, S. Ismat Shan, and J. Kolodzey, “Current Transport Characteristics of SiGeC/Si Hetrojunction Diode,” IEEE Electron Device Lett. vol. 17, no. 12, pp.589-591, 1996
    [12] W.P. Maszara, T.Thompson, “Strain compensation by Ge in B-doped silicon epitaxial films,” Journal of Applied Physics 72(9), pp. 4477-4479, 1 Nov, 1992.
    [13] S. Sego, R. J. Culbertson, A.E. Bair, T. L. Alford, “Comparison between predicted strain values using elastic theory and experimental strain values for SiGeC alloy films grown on Si(100),” Materials Chemistry and Physics, 46, pp.277-282, 1996.
    [14] G. He, M. D. Savellano and H. A. Atwater, “Synthesis of Dislocation-Free Siy(SnxC1-x)1-y Alloys by Molecular-Beam Deposition and Solid-Phase Epitaxy,” Appl. Phys. Lett., vol. 65, pp.1159-1161, 1994.
    [15] P. Warren, M. Dutoit, P. Boucaud, J. –M Lourtioz, and F. H. Julien, “RTCVD growth and characterization of SiGeC multi-quantum well,” Thin Solid Films 294, pp.125-128, 1997.
    [16] S. M. Sze, VLSI Technology, 2nd ed., p.88, McGRAW-HILL int. ed., New York, 1988

    Chapter 6
    [1] K. Nagata et al., “High-speed performance of Al1-xGaxAs/GaAs heterojunction bipolar transistors with nonalloyed emitter contacts,” IEEE Trans. Electron Devices, vol.34, no.11, p.2369, 1987.
    [2] S. J. Kovacic, B. J. Robinson, J. G. Simmons, and D. A. Thompson, “InP/InGaAsP Double-Heterostructure Optoelectronic Switch,” IEEE Electron Device Lett., vol.14, no.2, pp.54-56, 1993.
    [3] L. D. Lanzerotti, A. St. Amour, C. W. Liu, J. C. Sturm. J. K. Watanabe, and N. D. Theodore, “Si/Si1-x-yGexCy/Si Heteroojunction Bipolar Transistors,” IEEE Electron Device Lett., vol.17, no.7, pp.334-337, 1996.
    [4] C. A. King, J. L. Holy, C. M. Gronet, J. F. Gissons. M. P. Scott, and J. Turner, “Si/Si1-xGex heterojunction Bipolar Transistors produced by limited reaction processing,” IEEE Electron Device Lett., vol.10, no.2, pp.52-54, 1989.
    [5] S. J. Kovacic, J. G. Simmons K, Song, J. P. Noel, and D. C. Houghton, “Si/SiGe Digital optoelectronic Switch,” IEEE Electron Device Lett., vol.12, no.8, pp.439-441, 1993.
    [6] C. Y. Chang, J. W. Hong, nd Y. K. Fang, “Amorphous photo-transistors and avalanche photodiodes,“ IEE Proceedings-J, vol.138, no.3, pp.226-233, 1991.
    [7] S. B. Hwang, Y. K. Fang, K. H. Chen, C. R. Liu, J. D. Hwang, and M. H. Chou, “An a-Si:H/a-SiGe:H Bulk-Barrier Phototransistor with a-SiC:H Barrier Enhancement layer for High-Gain IR Optical Detector,” IEEE Trans. Electron Devices, vol.40, no.4, pp.721-726, 1993.
    [8] W. T. Hsieh, Y. K. Fang, W. J. Lee, K. H. Wu, J. J. Ho, K. H. Chen and S. Y. Huang, “An a-SiGe:H Phototransistor Integrated with a Pd Film on Glass Substrate for Hydrogen Monitoring,” IEEE Trans. on Electron Devices, vol.47, no.5, pp.939-943, 2000.
    [9] L. B. Rowland, R. S. Kern, S. Tanaka, and R. F. Davis, “Aluminum nitride/silicon carbide multilayer heterostructure produced by plasma-assited, gas-source moleculaer bam epitaxy,” Appl. Phys. Lett., vol.62, no.25, 21 June, pp.3333-3335, 1993.
    [10] S. Nakamura. T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green light emitting diodes,” J. Appl. Phys., vol.76, no.12, 15 Dec., pp.8189-8191, 1994.
    [11] Q. Chen, M. A. Khan, C. J. Sun, and J. W. Yang, “Visible-blind ultraviolet photodetectors based on GaN p-n junctions,” Electron. Lett., vol.31, no.20, pp.1781-1782, 1995.
    [12] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. A. Khan, and M. S. Shur, “High-Temperature Performance of AlGaN/GaN HFET’s on SiC Substrates,” IEEE Electron Device Lett., vol.18, no.10, pp.492-494, 1997.
    [13] S. C. Binari, J. M. Redwing, G. Kelner, and W. Kruppa, “AlGaN/GaN HEMT’s grown on SiC Substrates,” Electron. Lett., vol.33, no.3, pp.242-243, 1997.
    [14] John C. Angus, “Diamond and diamond-like films,” Thin Solid Films, vol.216, pp.126-133, 1992.
    [15] W. Zhu, B. R. Stoner, B. E. Williams, and J. T. Glass, “Growth and Characterization of Diamond Films on Nondiaamond Substrates for Electronic Applications,” Proceedings of the IEEE, vol.79, no.5, pp.621-646.
    [16] A. Vescan, I. Daumiller, P. Gluche, W. Ebert, and E. Kohn, “Very High Temperature Operation of Diamond Schottky Diode,” IEEE Electron Device Lett., vol.18, no.11, pp.556-558, 1997.
    [17] Y. S. Pang, S. M. Chan, and R. B. Jackman, “A thin film diamond p-channel field-effect transistor,” Appl. Phys. Lett., vol.70, no.3, 20 Jan., pp.339-341, 1997.
    [18] M. D. Whitfield, S. M. Chan, and R. B. Jackman, “Thin film diamond photodiode for ultraviolet light detection,” Appl. Phys. Lett., vol.68, vol.3, 15 Jan, pp.290-292, 1996.
    [19] B. R. Stoner and J. T. Glass, “Textures diamond growth on (100) b-SiC via microwave plasma chemical vapor ddeposition,” Appl. Phys. Lett., vol.60, no.6, 10 Feb, pp698-700, 1992.
    [20] N. Marechal and S. Yamashita, “Oriented Nucleation of Diamond particles on (001) b-SiC Surface at Low Pressure,“ Jpn. J. Appl. Phys., Part 2, vol.34, no.12B, pp.l1671-l1674, 1995.
    [21] J. Steckel, J. P. Li, “Epitaxial Growth of b-SiC on Si by RTCVD with C3H8 and CH4,” IEEE Trans. Electron Devices, vol.39, no.1, pp.64-74, 1992.
    [22] F.Y. Huang, K.Sskamoto, K.L. Wang, P. Trinh, and B. Jalali, “Epitaxial SiGeC Waveguide Photodetector Grown on Si Substrate with Response in the 1.3-1.55 μm Wavelength Range,” IEEE Photonics Technology Letters, vol.9, no.2, pp.229-231, 1997.

    下載圖示 校內:立即公開
    校外:2002-07-08公開
    QR CODE