簡易檢索 / 詳目顯示

研究生: 簡銘葦
Jian, Ming-Wei
論文名稱: 舒曼波對黑色素腫瘤細胞電壓性鈣離子通道之影響
Effects of Schumann Wave on Voltage-gated Calcium Channels of B16F10 Cancer Cells
指導教授: 張凌昇
Jang, Ling-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 40
中文關鍵詞: 舒曼波小鼠黑色素腫瘤癌細胞電壓門控鈣離子通道
外文關鍵詞: Schumann Wave, B16F10 cancer cells, voltage-gated calcium channel
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文主要探討舒曼波對小鼠黑色素腫瘤細胞(B16F10)的細胞活性影響,並深入研究細胞內鈣離子以及電壓門控鈣離子通道(VGCC)的機制。本實驗使用舒曼波頻率為7.83±0.3Hz,搭載強度為0.3±0.05 mT的電磁場,磁場暴露的時間長度為48小時。實驗方式分為三個階段,先以舒曼波照射在B16F10細胞上,藉由MTT的方式來檢測細胞活性。第二部分是舒曼波照射後,量測細胞內的鈣離子濃度,藉由fluo-4螢光染劑染色,並使用高通量螢光顯微顯微鏡來拍攝鈣離子螢光值。第三部分使用VGCC阻斷劑,量測舒曼波對B16F10細胞內的鈣離子變化差異。鈣離子在細胞內扮演極為重要的角色,主要為調控各種生物效應,像是細胞增生,細胞壞死,和細胞凋亡等等。
      結果指出,舒曼波對B16F10細胞照射48小時的抑制率達到25.5%。並可以增加細胞內鈣離子濃度19.2%。只照射30分鐘則可立即上升75%細胞內鈣離子濃度。上升75%鈣離子濃度中,發現有24%經由VGCC,51%經由細胞內鈣庫釋放。而24%經由VGCC上升的鈣離子濃度中,有9%是經由L-type VGCC,15%經由T-type VGCC進入。由此可知,舒曼波對B16F10細胞有抗癌的功效,其抑制原因和鈣離子關係密切。

    This paper mainly discusses the effect of Schumann wave on the activity of mouse melanoma tumor cells (B16F10), and further studies the mechanism of intracellular calcium ion and voltage-gated calcium channel (VGCC).This experiment uses a Schumann wave frequency of 7.83±0.3 Hz and an electromagnetic field with an intensity of 0.3±0.05 mT. The magnetic field exposure time is 48 hours. The experimental method was divided into three parts. First, the B16F10 cells was exposed to Schumann wave, and cell activity was detected by MTT. The second part, after Shuman wave expose, the intracellular calcium concentration was measured, stained with fluo-4 fluorescent dye, and a high-throughput fluorescence microscopy was used to photograph the calcium ion fluorescence value. The third part, VGCC blockers were used to measure the differences in the calcium ion changes in B16F10 cells with and without Schumann waves exposure. As one of the important ions in the cells, the intracellular calcium ions play an important role on influencing several biological effects of the cellular process, including cell proliferation, cell apoptosis, cell death and so on.
    The results show that the inhibitory rate of the B16F10 cells with the Schumann wave exposure for 48 hours reached 25.5%, and the intracellular calcium ion concentration increase 19.2%. Exposure for 30 minutes can immediately increase the intracellular calcium concentration by 75%. Of the 75% increase in calcium ion concentration, 24% was found via VGCC and 51% was released via intracellular calcium stores. Of the 24% increase in calcium concentration via VGCC, 9% were via L-type VGCC and 15% via T-type VGCC. It demonstrate that Schumann wave has an anti-cancer effect on B16F10 cells, and its inhibition could be related to calcium ions.

    CONTENTS 中文摘要 III ABSTRACT IV ACKNOWLEDGEMENT VI CONTENTS…………………………………………………………VII LIST OF FIGURE……………………………………………………IX CHAPTER 1 Introduction 1 1-1 Background and motivation 1 1-1-1 Background 1 1-1-2 Motivation 3 1-2 Introduction of ELF-EMF 5 1-3 Ca2+ signal with cancer cells 7 1-4 VGCC blocker experiment 8 CHAPTER 2 MATERIAL AND METHOD 10 2-1 Cell line 10 2-2 Schumann wave device design 11 2-2-1 Frequency parameter of signal 12 2-2-2 Magnetic field 14 2-3 Cell analysis method 17 2-3-1 MTT assay 17 2-3-2 Optical density value (O.D value) 17 2-3-3 Intracellular calcium fluorescence measurement 18 2-3-4 Voltage-gated calcium channels blocker experiment 19 2-3-5 Statistical analysis 19 CHAPTER 3 EXPERIMENTAL SETUP 20 3-1 Experimental setup 20 CHAPTER 4 EXPERIMENT RESULTS AND DISCUSSION 23 4-1 Experiment results 23 4-2 Discussions of experiment results 29 CHAPTER 5 CONCLUSION 33 REFERENCES 34

    [1] Hollenbach, D.F. and J.M. Herndon. Deep-Earth Reactor: Nuclear Fission, Helium, and the Geomagnetic Field. 2001, National Academy of Sciences. p. 11085.

    [2] S. J. Palmer A M. J. Rycroft A M. Cermack. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv Geophys, vol. 27, pp. 557–595, 2006.

    [3] Lacy-Hulbert, A., J.C. Metcalfe, and R. Hesketh, Biological Responses to Electromagnetic Fields. FASEB Journal: Official Publication of the Federation Of American Societies For Experimental Biology. 1998. 12(6): p. 395-420.

    [4] Nancy Wertheimer and ED Leeper. “Original Contributions Electrical Wiring Configurations and Childhood Cancer, Ajttmcan Journal of epidemiolooy,”1979 Vol. 109, No. 3

    [5] Lennart Tomenius.50-Hz Electromagnetic Environment and the Incidence of Childhood Tumors in Stockholm County, Bioelectromagnetics 7391-207 (1986)

    [6] Savitz, David A., et al. Case-control study of childhood cancer and exposure to 60-Hz magnetic fields. American journal of epidemiology 128.1 (1988): 21-38.

    [7] Washburn, E.P., et al.Residential Proximity to Electricity Transmission and Distribution Equipment and Risk of Childhood Leukemia, Childhood Lymphoma, and Childhood Nervous System Tumors: Systematic Review, Evaluation, and Meta-Analysis.Rapid Communications Oxford-New York. p. 299,1994

    [8] Hermann Berg. Problems of weak electromagnetic field effects in cell biology.Bioelectrochemistry and Bioenergetics,vol. 48, pp. 355-360, 1999.

    [9] Brighton CT, Wang W, Seldes R, Zhang G, Pollack SR. Signal Transduction in Electrically Stimulated Bone Cells. The Journal of Bone & Joint Surgery, vol. 83, pp. 1514-1523, 2003.

    [10] Christina L. Ross, Mevan Siriwardane, Graça Almeida-Porada, Christopher D. Porada, Peter Brink, George J. Christ, Benjamin S. Harrison. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation.Stem Cell Research, vol. 15, pp. 96-108, 2015.

    [11] Tingting Wang,Yunzhong Nie,Shuli Zhao,Yuwang Han, Youwei Du, and Yayi Hou. Involvement of Midkine Expression in the Inhibitory Effectsof Low-Frequency Magnetic Fieldson Cancer Cells, Bioelectromagnetics, vol. 32, pp. 443-452, 2011.

    [12] Yunzhong Nie, Leilei Du, Yongbin Mou, Zhenjun Xu, Leihua Weng, Youwei Du, Yanan Zhu, Yayi Hou and Tingting Wang.Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation. BMC Cancer, vol. 13, pp. 582, 2013.

    [13] Carly A. Buckner, Alison L. Buckner, Stan A. Koren, Michael A. Persinger, Robert M. Lafrenie.Inhibition of Cancer Cell Growth by Exposure to a Specific Time-Varying Electromagnetic Field Involves T-Type Calcium Channels. PLoS ONE, vol. 10, 2015.

    [14] Anna KOZIOROWSKA, Przemysław SOŁEK, Lena MAJCHROWICZ, Maria ROMEROWICZ-MISIELAK .The impact of electromagnetic fields with frequency of 50 Hz on metabolic activity of cells in vitro. PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 1/2017

    [15] JW Zimmerman, MJ Pennison, I Brezovich2, N Yi, CT Yang, R Ramaker, D Absher, RM Myers, N Kuster, FP Costa, A Barbault and B Pasche. Cancer cell proliferation is inhibited by specific modulation frequencies. British Journal of Cancer, vol. 106, pp. 307-313, 2012.

    [16]Cifra M, Fields JZ, Farhadi A. Electromagnetic cellular interactions. Prog Biophys Mol Biol. 2011; 105:
    223 – 246. doi: 10.1016/j.pbiomolbio.2010.07.003 PMID: 20674588

    [17]Stil, M., Lindstro¨m, E., Mild, K. H., et al. (2002). Inability of 50 Hz magnetics fields to regulate PKC-and Ca+2-dependent gene expression in Jurkat cells. Cell. Biol. Int. 26(2):203–209.

    [18] Markov, M.S., Angiogenesis, magnetic fields and 'window effects'. Cardiology,
    2010. 117(1): p. 54-56.

    [19] Simko M. Cell type specific redox status is responsible for diverse electromagnetic field effects. CurMed Chem. 2007; 14: 1142 – 1152.

    [20] Crochetti S, Beyer C, Schade G, Egli M, Frohlich J, Franco-Obregon A. Low intensity and frequency pulsed electromagnetic fields selectively impair breast cancer cell viability. PLOS ONE. 2013; 8:e72944. doi: 10.1371/journal.pone.0072944 PMID: 24039828

    [21] International Commission on Non-Ionizing Radiation Protection. Guidelines on limits of exposure to static magnetic fields. Health Phys. 2009 Apr; 96(4):504-14..

    [22] Walleczek, J. and R.P. Liburdy. Nonthermal 60 Hz sinusoidal magnetic-field exposure enhances 45Ca2+ uptake in rat thymocytes: dependence on mitogen activation. FEBS Letters, 1990. 271(1-2): p. 157-160.

    [23] Focke F, Schuermann D, Kuster N, Schar P. DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure. Mutation Res. 2010; 683: 74 – 83. doi: 10.1016/j. mrfmmm.2009.10.012 PMID: 19896957

    [24] Willem W. Overwijk, et al. B16 as a Mouse Model for Human Melanoma. Curr Protoc Immunol. May; CHAPTER: Unit–20.1. 2001

    [25] A. Das, et al. Functional expression of voltage-gated calcium channels in human melanoma. Pigment Cell Melanoma Res.. 25; 200–212 , 2012

    [26] Wang T, Nie Y, Zhao S, Han Y, Du Y, Hou Y. Involvement of midkine expression in the inhibitory effects of low-frequency magnetic fields on cancer cells. Bioelectromagnetics. 2011; 32: 443 – 452. doi: 10. 1002/bem.20654 PMID: 21360556

    [27] Pall, Martin L. "Electromagnetic fields act via activation of voltage‐gated calcium channels to produce beneficial or adverse effects." Journal of cellular and molecular medicine 17.8 (2013): 958-965.

    [28] Te-Wei Yeh. Effects of Schumann Wave on B16F10 Cancer Cells. 2016

    [29] Yu-Ting Huang. Effects of Extremely-Low Frequency Electromagnetic Field on B16F10 Cancer Cells.2016

    [30] Brighton CT, Wang W, Seldes R, Zhang G, Pollack SR. "Signal Transduction in Electrically Stimulated Bone Cells," The Journal of Bone & Joint Surgery, vol. 83, pp. 1514-1523, 2003

    [31] Irena cosic, Dean Cvetkovic, Qiang Fang, Emil Jovanov, Harry Lazoura. “Human Electrophysiological Signal Responses to ELF Schumann Resonance and Artificial Electromagnetic Fields,” FME Transactions, vol. 34, pp. 93-103, 2006.

    [32] Daniel B. Lyle, Xinghua Wang, Robert D. Ayotte, Asher R. Sheppard, and W. Ross Adey. Calcium Uptake by Leukemic and Normal T-Lymphocytes Exposed to Low Frequency Magnetic Fields. Bioelectromagnetics 12:145-156 (1991)

    [33] Roderick HL, Cook SJ.Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer, vol. 8, pp. 361-375, 2008.

    [34] Natalia Prevarskaya, Halima Ouadid-Ahidouch, Roman Skryma and Yaroslav Shuba.Remodelling of Ca2+ transport in cancer: how it contributes to cancer hallmarks? Phil. Trans. R. Soc. B, vol. 10, 2013.

    [35] Markov, M.S., Angiogenesis, magnetic fields and 'window effects'. Cardiology, 117(1): p. 54-56. 2010.

    [36] M. Simko ́ , R. Kriehuber, D.G. Weiss,1 and R.A. Luben, Effects of 50 Hz EMF Exposure on Micronucleus Formation and Apoptosis in Transformed and Nontransformed Human Cell Lines, Bioelectromagnetics 19:85–91 (1998)

    [37] Lisi A, Ledda M, Rosola E, et al. Extremely low frequency electromagnetic field exposure promotes differentiation of pituitary corticotrope-derived AtT20 D16V cells. Bioelectromagnetics. 2006; 27: 641–51.

    [38] Laura Teodori , et al. Static Magnetic Fields Affect Calcium Fluxes and Inhibit Stress-Induced Apoptosis in Human Glioblastoma Cells. Cytometry 49:143–149 (2002)

    [39] Denis Flipo , et al. Increased apoptosis, changes in intracellular Ca2+ , and functional alterations in lymphocytes
and macrophages after in vitro exposure
to static magnetic field.” Journal of toxicology and environmental health, part a, 54:63–76, 1998

    [40] Igor N. Sergeev. Calcium signaling in cancer and Vitamin D. J. Steroid ,Biochemistry & Mol. 2005; 97:145-151.

    [41] William A. Catterall Voltage-Gated Calcium Channels. Cold Spring Harbor Laboratory Press , 2011

    [42] Barrige, M. J., M. D. Bootman, and H. L. Roderick. "Calcium signaling: dynamics, homeostasis, and remodeling." Nature 4 (2003): 517-529.

    [43] Berridge, Michael J. "Calcium signalling remodelling and disease." (2012): 297-309.

    [44] Cui, Yujie, et al. "Exposure to extremely low-frequency electromagnetic fields inhibits T-type calcium channels via AA/LTE4 signaling pathway." Cell Calcium 55.1 (2014): 48-58.

    [45] Yu, Han-Gang, et al. "Altering calcium influx for selective destruction of breast tumor." BMC cancer 17.1 (2017): 169.

    [46] Taylor, James T., et al. "Calcium signaling and T-type calcium channels in cancer cell cycling." World journal of gastroenterology: WJG 14.32 (2008): 4984.

    [47] Rao, V. S., et al. "Nonthermal effects of radiofrequency-field exposure on calcium dynamics in stem cell-derived neuronal cells: elucidation of calcium pathways." Radiation research 169.3 (2008): 319-329.

    [48] Cens, Thierry, et al. "Molecular characterization and functional expression of the Apis mellifera voltage-dependent Ca2+ channels." Insect biochemistry and molecular biology 58 (2015): 12-27.

    [49] Pérez-Riesgo, Enrique, et al. "Transcriptomic Analysis of Calcium Remodeling in Colorectal Cancer." International journal of molecular sciences 18.5 (2017): 922.

    [50] Pilla, Arthur A. "Electromagnetic fields instantaneously modulate nitric oxide signaling in challenged biological systems." Biochemical and biophysical research communications 426.3 (2012): 330-333.

    [51] Pall, Martin L. "Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression." Journal of chemical neuroanatomy 75 (2016): 43-51.

    [52] Ohkubo T, Yamazaki J. T-type voltage-activated calcium channel Cav3.1, but not Cav3.2, is involved in the inhibition of proliferation and apoptosis in MCF-7 human breast cancer cells. Int J Oncol. 2012; 41:267 – 275. doi: 10.3892/ijo.2012.1422 PMID: 22469755

    [53] Taylor JT, Huang L. Pottle JE, Liu K, Yang Y, Zeng X, et al. Selective blockade of T type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett. 2008b; 267:116 – 124. doi: 10.1016/j.canlet.2008.03.032 PMID: 18455293

    [54] Hirooka K, Bertolesi GE, Kelly ME, Denovan-Wright EM, Sun X, Hamid J, et al. T-Type calcium channel alpha1G and alpha1H subunits in human retinoblastoma cells and their loss after differentiation. J Neu-rophysiol. 2002; 88: 196 – 205. PMID: 12091545

    [55] Santini, M. T., et al. "Extremely low frequency (ELF) magnetic fields and apoptosis: a review." International Journal of Radiation Biology 81.1 (2005): 1-11.

    [56] Korzh-Sleptsova, I. L., et al. "Low frequency MFs increased inositol 1, 4, 5-trisphosphate levels in the Jurkat cell line." FEBS letters 359.2-3 (1995): 151-154.

    [57] Wei, Jinhong, et al. "Effects of extremely low frequency electromagnetic fields on intracellular calcium transients in cardiomyocytes." Electromagnetic biology and medicine 34.1 (2015): 77-84.

    [58] Komazaki, Shinji, and Kazuhiro Takano. "Induction of increase in intracellular calcium concentration of embryonic cells and acceleration of morphogenetic cell movements during amphibian gastrulation by a 50‐Hz magnetic field." Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 307.3 (2007): 156-162.

    [59] Lyle, Daniel B., et al. "Intracellular calcium signaling by jurkat T‐lymphocytes exposed to a 60 hz magnetic field." Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association 18.6 (1997): 439-445.

    下載圖示 校內:2023-09-01公開
    校外:2023-09-01公開
    QR CODE