簡易檢索 / 詳目顯示

研究生: 劉思吟
Liu, Ssu-Yin
論文名稱: 溶膠凝膠法製備氧化銦鋅鋯薄膜電晶體及其特性探討
The Investigations on the Electrical Properties of ZrInZnO Thin-Film Transistors via Sol-Gel Method
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 79
中文關鍵詞: 溶膠凝膠法非結晶相薄膜電晶體
外文關鍵詞: sol-gel, Amorphous, Thin Film Transistors
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於光電產業迅速發展,帶領了電子平面顯示器廣泛的應用在每一個人的生活中,因此驅動顯示器的開關元件「薄膜電晶體」(TFT)就顯得格外重要。薄膜電晶體的好壞將會大幅的影響顯示器的性能,因此如何改善薄膜電晶體的品質、以及降低生產成本,一直都是研究與生產上努力的目標。
    本論文採用低成本的溶膠凝膠法來製備氧化銦鋅鋯薄膜電晶體,第一部分:探討調變不同鋯摻雜於氧化銦鋅的含量,並探討其特性,第二部份:針對溶膠凝膠法製作電晶體的燒結溫度做詳細探討,第三部分:採用UVO作為對薄膜的前置處理再退火觀察其特性,經由一系列結果,製備出飽和載子遷移率為 2.08 cm2/Vs,開關比Ion/off ratio約106,最佳次臨界擺幅S.S=0.66V/decade 之電晶體。藉由XPS、XRD、AFM、SEM、以及UV-Visible spectrophotometer等儀器分析,將元件I-V特性加以討論。

    Because of the rapid development of the optoelectronics industry, nowadays applications of the electronic flat panel display are wide. Therefore, the switching elements of the driving display "thin film transistor" (TFT) play an important role, and TFTs will dramatically affect the efficiency of the display. So, We have making effort on both researched and production process to improve the quality of TFT and reduce the production costs, and accomplish that is the most important goal.
    In this study, we use solution-processed method to fabricated ZrInZnO thin-film transistors. To investigate the films and their further effects on devices characteristic, a serious of measurements like XPS, XRD, AFM, SEM and UV-Visible were carried out.
    Part 1: Investigation of the ZrInZnO as an active layer with various mole ratio of zirconium.
    Part 2: We study about TFTs through various annealing temperature via sol-gel method.
    Part 3: We adapt UVO to pre-processing and then annealing to observe TFTs character.
    From the experimental result, the devices characteristics are saturation mobility 2.08cm2/v s, I on/off ratio~106 and sub-swing 0.66V/dec.

    摘要 I Abstract II 誌 謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 論文架構 3 第二章 理論與文獻回顧 4 2-1 薄膜電晶體 4 2-1-1 工作原理 4 2-1-2 薄膜電晶體重要參數 7 2-2 非結晶相氧化物半導體 8 2-2-1 非結晶相氧化物半導體優點與特色 8 2-2-2 元素摻雜於氧化銦鋅為主體之薄膜電晶體 9 2-3 溶膠凝膠法 12 2-3-1 溶膠凝膠法原理 12 2-3-3 溶膠凝膠法鍍膜方式 15 第三章 實驗步驟及方法 16 3-1 實驗流程 16 3-1-1 主動層溶液配製步驟 17 3-1-2 基板清洗步驟 18 3-1-3 薄膜電晶體製作步驟 18 3-2 製程儀器設備 20 3-3 分析儀器及其原理 21 3-3-1 α-step 21 3-2-2 UV-Visible spectrophotometer 22 3-2-3 XPS 23 3-2-4 SEM 24 3-2-5 AFM 25 3-2-6 GIXRD 26 3-2-7 薄膜電晶體電性量測儀 27 第四章 結果與討論 28 4-1 鋯摻雜濃度之影響 28 4-1-1 電性 29 4-1-2 主動層晶格結構分析(GIXRD) 33 4-1-3 X光光電子能譜分析儀(XPS)分析 34 4-1-4 原子力顯微鏡(AFM)分析 39 4-1-5 場發射掃描式電子顯微鏡(SEM)分析 41 4-1-6 光學分析 42 4-1-7 總結 44 4-2 退火溫度之影響 45 4-2-1 電性 46 4-2-2 主動層晶格結構分析(GIXRD) 49 4-2-3 X光光電子能譜分析儀(XPS)分析 50 4-2-4 原子力顯微鏡(AFM)分析 53 4-2-5 場發射掃描式電子顯微鏡(SEM)分析 54 4-2-6 光學分析 60 4-2-7 總結 61 4-3 以UV-ozone 對元件前置處理之影響 62 4-3-1 UV-ozone 方法簡介 63 4-3-2 電性 64 4-3-3 X光光電子能譜分析儀(XPS)分析 68 4-3-4原子力顯微鏡(AFM)分析 71 4-3-5場發射掃描式電子顯微鏡(SEM)分析 72 4-3-6 總結 73 第五章 結論與未來展望 74 5-1 結論 74 5-1-1 鋯摻雜濃度之影響 74 5-1-2 退火溫度之影響 74 5-1-3 以UV-ozone 對元件前置處理之影響 74 5-2 未來展望 75 參考文獻 76

    [1] J. F. Wager, D. A. Keszler , R. E. Presley. "Transparent Electronics," Springer,2008.
    [2] C.R. Kagan , P. Andry, "Thin-Film Transistors," Marcel Dekker,2003.
    [3] T. Kamiya and H. Hosono, "Material characteristics and applications of transparent amorphous oxide semiconductors," NPG Asia Mater, vol. 2, pp. 15-22, 2010.
    [4] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, pp. 488-492, 2004.
    [5] H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," Journal of Non-Crystalline Solids, vol. 352, pp. 851-858, 2006.
    [6] P. D. C. King and T. D. Veal, "Conductivity in transparent oxide semiconductors," Journal of Physics Condensed Matter, vol. 23, 2011.
    [7] G. H. Kim, W. H. Jeong, and H. J. Kim, "Electrical characteristics of solutionprocessed InGaZnO thin film transistors depending on Ga concentration," Physica Status Solidi (A) Applications and Materials Science, vol. 207, pp. 1677-1679, 2010.
    [8] H. S. Shin, G. H. Kim, W. H. Jeong, B. D. Ahn, and H. J. Kim, "Electrical properties of yttrium-indium-zinc-oxide thin film transistors fabricated using the sol-gel process and various yttrium compositions," Japanese Journal of Applied Physics, vol. 49, 2010.
    [9] D. N. Kim, D. L. Kim, G. H. Kim, S. J. Kim, Y. S. Rim, W. H. Jeong, et al., "The effect of la in InZnO systems for solution-processed amorphous oxide thin-film transistors," Applied Physics Letters, vol. 97, 2010.
    [10] Y. Choi, G. H. Kim, W. H. Jeong, J. H. Bae, H. J. Kim, J.-M. Hong, et al., "Carrier-suppressing effect of scandium in InZnO systems for solution-processed thin film transistors," Applied Physics Letters, vol. 97, 2010.
    [11] W. H. Jeong, G. H. Kim, D. L. Kim, H. S. Shin, H. J. Kim, M.-K. Ryu, et al., "Effects of Hf incorporation in solution-processed Hf-InZnO TFTs," Thin Solid Films, pp. 5740-5743,2011,.
    [12] http://www.centexbel.be/solgel-treatment
    [13] 林玫均, "以溶膠凝膠法製備AZO透明導電薄膜及其在薄膜電晶體上之應用",國立台南大學材料科學系碩士論文,2012
    [14] D. E. Bornside, C. W. Macosko, and L. E. Scriven, "Spin coating: One-dimensional model," Journal of Applied Physics, vol. 66, pp. 5185-5193,1989.
    [15] B.-Y. Su, S.-Y. Chu, Y.-D. Juang, and H. Leed, "Improved Negative Bias Stress Stability of IZO Thin Film Transistors via Post-Vacuum Annealing of Solution Method," ECS J. Solid State Sci. Technol, vol. 2,2013
    [16] Chennupati Jagadish and Stephen Pearton . "Zinc Oxide Bulk, Thin Films and Nanostructures" Elsevier, 2011.
    [17]L. S. Bing L. J. Qian , Chinese J. Struct. Chem 28, 360~364, 2009.
    [18] T. Tomita, K. Yamashita, Y. Hayafuji, and H. Adachi, "The origin of n-type conductivity in undoped In2O3" Applied Physics Letters, vol. 87, pp. 051911-3, 2005.
    [19] K. K. Banger, Y. Yamashita, K. Mori, R. L. Peterson, T. Leedham, J. Rickard, et al., "Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process," Nat Mater, vol. 10, pp. 45-50, 2011.
    [20] G. H. Kim, H. S. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, and H. J. Kim, "Inkjet-printed InGaZnO thin film transistor," Thin Solid Films, vol. 517, pp. 4007-4010, 2009.
    [21] Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, "Effect of Zr addition on ZnSnO thin-film transistors using a solution process," Applied Physics Letters, vol. 97, 2010.
    [22] C.-S. Fuh, S.M. Sze, P.-T. Liu, L.-F. Teng, Y.-T. Chou, " Role of environmental and annealing conditions on the passivation-free In-Ga-Zn-O TFT " Thin Solid Films , vol. 520, pp. 1489-1494,2011.
    [23] S. Jeong, J.-Y. Lee, S. S. Lee, Y. Choi, and B.-H. Ryu, "Impact of metal salt precursor on low-temperature annealed solution-derived Ga-doped In2O3 semiconductor for thin-film transistors," Journal of Physical Chemistry C, vol. 115, pp. 11773-11780, 2011.
    [24] Y. H. Hwang, S.-J. Seo, J.-H. Jeon, and B.-S. Bae, "Ultraviolet photo-annealing process for low temperature processed sol-gel zinc tin oxide thin film transistors," Electrochemical and Solid-State Letters, vol. 15, pp. H91-H93, 2012.
    [25] J. P. Chang, Y. S. Lin, and K. Chu, "Rapid thermal chemical vapor deposition of zirconium oxide for metal-oxide-semiconductor field effect transistor application," Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, vol. 19, pp. 1782-1787, 2001.
    [26] T. Kim, J. H. Lee, J. Y. Yang, S. W. Ryu, J. S. Hong,W. P. Hong, J. J. Kim, H. M. Kim, J. M. Yang and S. H. Park, "The Electronic and Optical Properties of IZO Thin Films Prepared by Pulsed DC Magnetron Sputtering," Journal of the Korean Physical Society, vol. 50, pp. 662∼665S, 2007.
    [27] D. Kim, C. Y. Koo, K. Song, Y. Jeong, and J. Moon, "Compositional influence on sol-gel-derived amorphous oxide semiconductor thin film transistors," Applied Physics Letters, vol. 95, 2009.
    [28] S. Jeong, Y.-G. Ha, J. Moon, A. Facchetti, and T. J. Marks, "Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors," Advanced Materials, vol. 22, pp. 1346-1350, 2010.
    [29] W.-F. Chung, T.-C. Chang, H.-W. Li, S.-C. Chen, Y.-C. Chen, T.-Y. Tseng, et al., "Environment-dependent thermal instability of sol-gel derived amorphous indium-gallium-zinc-oxide thin film transistors," Applied Physics Letters, vol. 98, 2011.
    [30] W.-F. Chung, T.-C. Chang, H.-W. Li, S.-C. Chen, Y.-C. Chen, T.-Y. Tseng, et al., "H2O-assisted O2 adsorption in sol-gel derived amorphous indium gallium zinc oxide thin film transistors," Electrochemical and Solid-State Letters, vol. 14, pp. H235-H237, 2011.
    [31] P.-T. Liu, Y.-T. Chou, and L.-F. Teng, "Environment-dependent metastability of passivation-free indium zinc oxide thin film transistor after gate bias stress," Applied Physics Letters, vol. 95, 2009.
    [32] S. Hirai, K. Shimakage, M. Sekiguchi, K. Wada, and A. Nukui, "Zirconium oxide coating on anodized aluminum by the sol-gel process combined with ultraviolet irradiation at ambient temperature," Journal of the American Ceramic Society, vol. 82, pp. 2011-2016, 1999.

    無法下載圖示 校內:2015-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE