簡易檢索 / 詳目顯示

研究生: 陳政宇
Chen, Cheng-Yu
論文名稱: 多頻率生物電阻抗測量系統於臨床應用之設計
The Design of Multi-Frequency Bioimpedance Measuring System for Clinical Applications
指導教授: 鄭國順
Cheng, Kuo-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 47
中文關鍵詞: 多頻率生物電阻抗電阻抗系統生物電阻抗應用
外文關鍵詞: Multi-frequency bioimpedance, bioimpedance system, bioimpedance applications
相關次數: 點閱:124下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物電阻抗是一種電阻抗測量技術,極具臨床應用潛力,也可以發展成為身體內部組織電特性成像。由於組織電特性會隨著頻率有所變化,不同頻率之電阻抗變化可以提供不同資訊,因此多頻率的生物電阻抗測量有其重要性。為了滿足多元化臨床應用,故本研究主要是研發出一套具有擴充性的多頻率生物電阻抗測量系統,其三個主要的部份,一為硬體設計,二為軟體設計,三則為系統效能驗證。在硬體架構的設計包含三個部份,(1)系統主要裝置,(2)延伸式通道切換裝置,與 (3)電極設計。軟體功能上主要分為三個主要部份,(1)阻抗測量參數設定,(2)系統校正,與(3)數據擷取。本論文所研發系統的特性綜合如下,系統的總諧波失真 (THD) 約為0.5%,而增益因子 (gain factor)的變異係數則低於0.1%以下。阻抗測量實驗結果,與Agilent 4263B 阻抗測量儀比較,在測量精密電阻方面,其最大差異誤差低於2%;在三元件模型測量方面,其最大差異低於1.5%;在電極裝置誤差測試方面,其最大誤差也低於3%。在組織的多頻率測量上,本系統比阻抗測量儀提供更多的頻率測量點。綜合上述,本系統具有實際臨床應用的能力,同時在測量組織的電特性也能提供阻抗頻譜資訊;系統具有下列特點,(1)多頻率測量,(2)可擴充性架構,(3)開發成本低,(4)具可攜性,與(5)電腦圖形控制介面。

    Bioimpedance technology is a kind of impedance measurement technology, and has great potential in clinical applications. It can also be developed for imaging the electrical property inside the body. Due to the property of tissues, the impedance may vary with the frequency of measuring signal. Thus, the multi-frequency impedance measurement plays an important role in characterizing the electrical property of tissues. For multiple clinical applications, the multi-frequency bioimpedance measuring system with extensibility is developed in this thesis. There are three main parts in this study, which are (1) hardware design, (2) software design, and (3) system performance evaluation and testing. The hardware design includes (1) main device for impedance measurement, (2) external device switch, and (3) electrode design. The software program includes (1) measurement parameter settings, (2) system calibrations, and (3) data acquisition. The performances for the developed system are summarized as follows. The total harmonic distortion (THD) is below 0.5%. The coefficient of variation about gain factor error is smaller than 0.1%. The experimental results of bioimpedances are also compared with the Agilent 4263B LCR meter. For the standard resistor measurement, the maximal percentage difference between the proposed system and LCR meter is within 2%. For a three-element model measurement, the maximal percentage of difference is below 1.5%. The maximal error of electrode re-placement is lower than 3%. Above all, this developed system can provide more points of measuring frequency in comparison with the LCR meter in bioimpedance spectroscopy. From the experimental results, it is demonstrated that the proposed system may be used for a variety of clinical applications. In summary, the proposed system has the following advantages: (1) the multi-frequency measurement capability, (2) the extensible system architecture, (3) low development cost, (4) good portability, and (5) control software with friendly GUI.

    CONTENTS CHINESE ABSTRACT ……………………………………………I ABSTRACT………………………………………………II ACKNOWLEDGMENT……………………………………III LIST OF TABLES……………………………………………VI LIST OF FIGURES ……………………………………VII Chapter 1 Introduction……………………………………………1 1.1 Bioimpedance technology and clinical applications…………………1 1.2 Electrical impedance tomography…………………………………………4 1.3 Literature review……………………………………………………………6 1.4 Motivations and purposes……………………………………………………7 Chapter 2 Materials and Methods……………………………………………………8 2.1 Research overview…………………………………………………………………8 2.2 Hardware design………………………………………9 2.2.1 Main device design……………………………………………10 2.2.2 External device switch design………………………………………………15 2.2.3 Electrodes design…………………………………………20 2.3 Software design……………………………………………………20 Chapter 3 Results and Discussions…………………………22 3.1 Multi-frequency bioimpedance measuring system………………………22 3.2 System function evaluation………………………………26 3.3 System error assessment……………………………………27 3.3.1 Total harmonic distortion test………………………………27 3.3.2 Gain factor test………………………………………28 3.3.3 Z-value measurement……………………………………28 3.3.4 Discussions………………………………………………31 3.4 System testing……………………………………………32 3.4.1 Standard resistor measurement……………………………32 3.4.2 Three-element model measurement………………………33 3.4.3 Segmental bioimpedance measurement…………………………34 3.4.4 Tissue impedance measurement………………………………39 3.4.5 Discussions………………………………………40 Chapter 4 Conclusions and Prospects………………………41 4.1 Conclusions……………………………………41 4.2 Prospects………………………………42 References……………………………43

    [1] D. S. Holder, Electrical Impedance Tomography, Methods, History and Applications, Institute of Physics Publishing, 2005.
    [2] A. De Lorenzo, A. Andreoli, J. Matthie, and P. Withers, “Predicting body cell mass with bioimpedance by using theoretical methods: a technological review,” J. Appl. Physiol. Vol. 82, pp. 1542-1558, 1997.
    [3] S. Grimnes and Ø. G. Martinsen, Bioimpedance and Bioelectricity Basics, Academic Press, 2000.
    [4] D. A. De Luis, R. Aller, O. Izaola, M. C. Terroba, G. Cabezas, and L. Cuellar, "Tissue electric properties in head and neck cancer patients," Ann Nutr Metab, vol. 50, pp. 7-10, 2006.
    [5] Y. Ohmine, T. Morimoto, Y. Kinouchi, T. Iritani, M. Takeuchi, and Y. Monden, "Noninvasive measurement of the electrical bioimpedance of breast tumors," Anticancer Res, vol. 20, pp. 1941-1946, May-Jun 2000.
    [6] A. Pietrobelli, M. Malavolti, N. Fuiano, and M. S. Faith, "The invisible fat," Acta Paediatr Suppl, vol. 96, pp. 35-38, Apr 2007.
    [7] S. A. Jebb, M. Siervo, P. R. Murgatroyd, S. Evans, G. Fruhbeck, and A. M. Prentice, "Validity of the leg-to-leg bioimpedance to estimate changes in body fat during weight loss and regain in overweight women: a comparison with multi-compartment models," Int J Obes (Lond), vol. 31, pp. 756-762, May 2007.
    [8] N. M. Albert, "Bioimpedance cardiography measurements of cardiac output and other cardiovascular parameters," Crit Care Nurs Clin North Am, vol. 18, pp. 195-202, Jun 2006.
    [9] F. Zhu, E. F. Leonard, and N. W. Levin, "Body composition modeling in the calf using an equivalent circuit model of multi-frequency bioimpedance analysis," Physiol. Meas., vol. 26, pp. S133-143, Apr 2005.
    [10] P. Aberg, I. Nicander, J. Hansson, P. Geladi, U. Holmgren, and S. Ollmar, "Skin cancer identification using multifrequency electrical impedance-a potential screening tool," IEEE Trans Biomed. Eng., vol. 51, pp. 2097-2102, 2004.
    [11] Y. A. Glickman, O. Filo, M. David, A. Yayon, M. Topaz, B. Zamir, A. Ginzburg, D. Rozenman, and G. Kenan, "Electrical impedance scanning: a new approach to skin cancer diagnosis," Skin Research and Technology, vol. 9, pp. 262-268, 2003.
    [12] S. Mattsson and B. J. Thomas, "Development of methods for body composition studies," Phys. Med. Biol., vol. 51, pp. R203-228, Jul 7 2006.
    [13] M. R. Smith, V. Fuchs, E. J. Anderson, M. A. Fallon, and J. Manola, "Measurement of body fat by dual-energy X-ray absorptiometry and bioimpedance analysis in men with prostate cancer," Nutrition, vol. 18, pp. 574-577, Jul-Aug 2002
    [14] A. J. Wilson, P. Milnes, A. R. Waterworth, R H Smallwood, and B. H. Brown, “Mk3.5: a modular, multi-frequency successor to the Mk3a EIS/EIT system,” Physiol. Meas., Vol. 22, pp. 49-54, 2001
    [15] N. Liu, G. J. Saulnier, J. C. Newell, and T.-J. Kao, “ACT4: A high-precision, multi-frequency electrical impedance tomograph,” Proc. 6th Conf. Biomedical Applications of EIT, London, June 2005.
    [16] H. Xia, A. S. Ross, E. Brevdo, T.-J. Kao, N. Liu, B.S. Kim, J. C. Newell, G. J. Saulnier, and D. Isaacson, ”The application software of ACT4,” Proc. 6th Conf. Biomedical Applications of EIT, London, June 2005.
    [17] R. Halter, A. Hartov, and K. D. Paulsen, “Design and implementation of a high frequency electrical impedance tomography system,” Physiol. Meas., Vol. 25, pp. 379-390, 2004.
    [18] R.-S. Horng, The Segmental Body Composition Measurement System, Master thesis, Institute of Biomedical Engineering, National Cheng Kung University, July 2002.
    [19] D. Tsunami, J. McNames, A. Colbert, S. Pearson, and R. Hammerschlag, “Variable frequency bioimpedance instrumentation,” Proc. 26th Ann. Inter. Conf. IEEE Eng. Med. Biol. Soc. Vol. 4, pp. 2386-2389, 2004.
    [20] K.-S. Cheng, C.-Y. Chen, M.-W. Huang, and C.-H. Chen, “A multi-frequency current source for bioimpedance application,” Proc. IEEE Inform. Tech. App. Biomed., Ioannina, Greece, 2006.
    [21] AD5933 Application notes, Analog Devices Inc. 2005.

    下載圖示
    2009-07-31公開
    QR CODE