| 研究生: |
曾育中 Tseng, Yu-chung |
|---|---|
| 論文名稱: |
以基因模糊控制器實現輔助路邊停車功能 A Genetic Fuzzy Controller for Assist Parallel Parking Function |
| 指導教授: |
王振興
Wang, Jeen-shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 測距模型 、路邊停車 、路徑追蹤 |
| 外文關鍵詞: | parallel parking, path tracking, odometry model |
| 相關次數: | 點閱:113 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在於實現具有自動路邊停車功能之智慧型代步車。在載具操控方面,以嵌入式系統作為系統之運算及控制核心,並透過控制器區域網路(Controller Area Network, CAN)匯流排接收感測器的資訊,即時下達控制指令給前輪轉向模組與後輪速度接收和驅動模組來達到控制智慧型代步車的目的。在定位方面,則使用可變磁阻感測器(Variable Reluctance Sensor, VRS)量測載具之速度資訊,並透過測距模型(Odometry Model)估測車子相對於起始點在任意時刻的姿態來達到即時定位的目的,並且同時利用型式A和型式B兩種校正方法來降低測距法的系統誤差以提升定位之精確性。此外;我們研發一套路邊停車演算法來自動導引載具進行路邊停車之功能。首先,演算法會使用超音感測器偵測停車空間大小是否合適。其次,車子在到達倒車地點後立即規劃合適的倒車路徑,最後,我們利用路經追蹤(Path Tracking)的方法設計基因模糊控制器來控制車子平穩地在倒車路徑上行駛。並由模擬和實驗結果證明本論文提出的路邊停車演算法之可行性與有效性。
The main focus of this thesis is to develop a genetic fuzzy controller for guiding steering of an intelligent vehicle to assist parallel parking. In the vehicle control, an embedded system is used as the central computing and control unit for receiving the information from sensors by a controller area network (CAN) bus. Based on the received information, the embedded system sends the commands to the front wheel driving circuit to steer the orientation of the vehicle, and to the rear driving circuit to control the vehicle speed. In the vehicle localization, a variable reluctance sensor (VRS) is employed to measure the speed of the vehicle. Based on this information, an odometry model is used to estimate the attitude of the vehicle to achieve real-time localization. In order to reduce the errors caused by the model uncertainty and improve the localization accuracy, two calibration methods—Type A and Type B have been proposed in this thesis. In addition, a parallel parking algorithm has been developed for guiding steer to assist parallel parking. The algorithm first uses ultrasonic sensors to scan the size of a parking space. If the size of the parking space fits in with the pre-specified parking requirements, the algorithm will indentify an appropriate ready-to-reverse position automatically. After the vehicle reaches the position, the reverse path will be generated from the ready-to-reverse position to the target parking position by the algorithm immediately. Finally, a path tracking system implemented by a genetic fuzzy controller is designed to control the vehicle to follow the reverse path smoothly. The simulation and experimental results have successfully validated the applicability and effectiveness of the proposed approaches.
[1]I. E. Paromtchik and C. Laugier, “Motion generation and control for parking an autonomous vehicle,” in Proc. IEEE Conf. on Robotics Automation, vol. 4, 1996, pp. 3117-3122.
[2]I. E. Paromtchik and C. Laugier, “Autonomous parallel parking of a nonholonomic vehicle,” in Proc. IEEE Int. Conf. on Intelligent Vehicle, 1996, pp. 13-18.
[3]I. E. Paromtchik and C. Laugier, “Automatic parallel parking and returning to traffic manoeuvres,” in Proc. IEEE Int. Conf. on Intelligent Robots and Systems, vol. 3, 1997, pp. 21-23.
[4]K. Lee, D. Kim, W. Chung, H. W. Chang, and P. Yoon, “Car parking control using a trajectory tracking controller,” in SCIE-ICASE Int. of Joint Conf., 2006, pp. 18-31.
[5]Y. Kanayama, and Y. Kimura, “A stable tracking control method for a nonholonomic mobile robot,” in IEEE/RSJ Int. Workshop on Intelligent Robots and Systems, 1991, pp., 384-389.
[6]J. Xu, G. Chen, and M. Xie, “Vision-guided automatic parking for smart car,” in Proc. IEEE Intelligent Vehicle Symp., 2000, pp. 725-730.
[7]Y. Zhao and E. G. Collins Jr., “Robust automatic parallel parking in tight spaces via fuzzy logic,” Robotics and Autonomous System, vol. 51, no. 2-3, pp. 111-127, 2005.
[8]H. Miyata, M. Phki, Y. Yokouchi, and M. Ohkita, “Control of the autonomous mobile robot DREAM-1 for a parallel parking,” Mathematics and Computes in Simulation, vol. 14, pp. 129-138, 1996.
[9]C. Bentalba, A. E. Hajjaji, and A. Rachid, “Fuzzy parking and point stabilization: application car dynamics model,” in Proc. of 5th IEEE Mediterranean Conf. on Control and Systems, 1997, pp. 1-6.
[10]W. A. Daxwanger and G. K. Schmidt, “Skill-based visual parking control using neural and fuzzy network,” in Proc. of IEEE Int. Conf. on System, Man, and Cybernetics, vol. 2, 1995, pp. 1659-1664.
[11]K. Y. Lian, C. S. Chin, and T. S. Chiang, “Parallel parking a car-like robot using fuzzy gain scheduling,” in Proc. IEEE Conf. Robotics Automation, vol. 4, 1999, pp. 1686-1691.
[12]Y.-S. Ryu, S.-Y. Oh, and S.-Y. Kim, “Robust automatic parking without odometry using and evolutionary fuzzy logic controller,” Int. Journal of Control, Automation and Systems, vol. 6, no. 3, pp. 434-443, 2008.
[13]T.-H. S. Li and S.-J. Chang, “Autonomous fuzzy parking control of a car-like mobile robot,” IEEE Trans. Systems, Man, and Cybernetics, vol. 33, pp. 451-465, 2003.
[14]F. Abdessemed, K. Benmahammed, and E. Monacelli, “A fuzzy-based reactive controller for a nonholonomic mobile robot,” Journal of Robotics and Autonomous Systems, vol. 47, pp. 31-46, 2004.
[15]A. Arslan and M. Kaya, “Determination of fuzzy logic membership functions using genetic algorithms: Application to Structure-Odor Modeling,” Fuzzy Sets and Systems, vol. 118, no. 2, 297-306, 2001.
[16]J.-Y. Lee and J.-J. Lee, “Multiple designs of fuzzy controllers for car parking using evolutionary algorithm,” in Proc. IEEE Int. Conf. on Mechatronics, 2007, pp. 1-6.
[17]H. N. Pishkenari, S. H. Mahboobi, and A. Meghdari, “On the optimum design of fuzzy logic controller for trajectory tracking using evolutionary algorithms,” in Proc. IEEE Conf. on Cybernetics and Intelligent Systems, 2004, pp. 1-3.
[18]O. CordÓn, F. Gomide, F. Herrera, F. Hoffmann, and L. Magdalena, “Ten years of genetic fuzzy systems: Current framework and new trends,” Fuzzy Sets and Systems, vol. 41, pp. 5-31, 2004.
[19]J. Hermosillo, C. Pradalier, and S. Sekhavat, “Modeling odometry and uncertainty propagation for a bi-steerable car,” in Proc. IEEE Intelligent Vehicles Symp., 2002, pp. 401-406.
[20]K. Lee, W. Chung, H. W. Chang, and P. Yoon, “Odometry calibration of a car-like mobile robot,” in Int. Conf. on Control, Automation and Systems, 2007, pp.17-20.
[21]J. Borenstein and L. Feng, “UMBmark - A Method for measuring, comparing, and correcting dead-reckoning errors in mobile robots,” The University of Michigan, Technical Report UM-MEAM-94-22, 1994.
[22]F. Gomez-Bravo, F. Cuesta, and A. Ollero, “Parallel and diagonal parking in nonholonomic autonomous vehicles,” Engineering Application of Artificial Intelligence, vol. 14, pp. 419-434, 2001.
[23]D. Lyon, “Parallel parking with curvature and nonholonomic constraints,” in Symp. Intelligent Vehicles, 1992, pp. 341-346.
[24]F. Cuesta, F. Gόmez-Bravo, and A. Ollero, “Parking maneuvers of industrial-like electrical vehicles with and without trailer,” IEEE Trans. Industrial Electronics, vol. 51, no. 2, pp. 257-269, 2004.
[25]Comfort Orthopedic Co., http://www.comfort.com.tw/cprofile.php.htm
[26]Intel Data Sheet, Intel PXA270 Processor, Electrical, Mechanical, and Thermal Specification, 2005.
[27]Koyo Steering Systems, Koyo Seiko Co., Ltd., No.145E.
[28]PIC18FXX8 Data Sheet, Microchip Technology Inc., U.S.A, 2001.
[29]Parallax, Inc., PING)))™ Ultrasonic Distance Sensor (#28015), v1.3, 2006.
[30]HIP4080A, http://www.intersil.com/data/fn/fn3178.pdf
[31]AD7224LN, http://www.datasheetcatalog.com
[32]張晏樹,車載資訊系統之通訊匯流排應用與技術,機械工業272期。
[33]陳意翔,具智慧型停車功能車型機器人之設計與研製,國立成功大學電機系碩士論文,2002。
[34]何程翔,車型機器人之全方位影像處理停車控制器設計與實現,國立成功大學電機系碩士論文,2005。
[35]內政部營建署,市區道路工程規劃及設計規範之研究,民國90年12月。