簡易檢索 / 詳目顯示

研究生: 黃上傑
Huang, Shang-Jie
論文名稱: 含黏彈複合樑柱接頭之鋼構架的實驗與數值研究
Experimental and Numerical Studies of Viscoelastic Composite Beam-column Connectors on Steel Frame
指導教授: 王雲哲
Wang, Yun-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 182
中文關鍵詞: 樑柱接頭複合材料阻尼彈塑性質黏彈性質
外文關鍵詞: beam-column connector, composite material, damping, viscoelastic properties, elastoplastic properties
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討鋼構架含新型黏彈式樑柱接頭之結構特性。研究包含數值模擬以及震動台試驗,並互相對照其結果。在震動台試驗中,我們製作兩組高度為3.8公尺之鋼結構架,其中一組在樑與柱之接合處包含黏彈式樑柱接頭,另一組作為對照組則無。新型樑柱接頭設計包含高分子材料、軟金屬材料以及傳統鋼鐵材料,為一複合式材料元件。實驗中施與鋼結構架底部步階函數震動,並記錄及分析其加速度歷時反應。實驗結果顯示鋼結構架含樑柱接頭之阻尼比較對照組有明顯提升,約莫25%;然而,若輸入連續之地震加速度歷時資料,實驗結果反應不如預期。推斷複合樑柱接頭在對抗甩動有顯著效果,但對於連續之地震,傳統之隔震元件或許仍是最佳選
    擇。另一方面,由於新型樑柱接頭包含高分子材料及軟金屬材料,使得鋼結構架含樑柱接頭之整體勁度下降。實驗結果顯示,由於鋼結構架整體勁度下降,連帶導致第一共振頻下降1%;而對比震動台及數值模擬之結果,第一共震頻之計算差距為6.4%,顯示數值模擬之結果在一定程度上可預測實驗狀況。此外、以數值模擬方式分析,新型樑柱接頭勁度較同尺寸型鋼約降低5%。然而,我們可以透過微調樑柱接頭中之微結構設計,來達到控制勁度下降比例與同時提升阻尼之目的。以等效截面積的概念而言,此新型接頭與切削接頭具有類似的想法,即折減斷面積,但藉由「微觀結構」的設計,此複合元件亦可提供優異的消能性質。

    The effects of viscoelastic composite connector on a steel frame were numerically and experimentally studied in this thesis. In our experimental studies, two one-story steel frames (3.8 m in hight) were performed on the shaking table. One of the specimens contains the viscoelastic composite beam-column connectors at its joints, and the other is a comparison specimen. The composite connector consists of polymer, soft metal, and conventional construction steel to form a composite material. The specimens were suddenly flung by the shaking table, and their acceleration responses were recorded and analyzed. Our experimental data shows that the specimen with the composite connector exhibits larger overall damping that of the comparison specimen. The overall damping enhancement is about 25\% from the shaking-table by flinging the specimens. From earthquake-spectrum shaking-table experiment, the steel frame with the composite connector exhibited larger acceleration responses. Hence, the composite connector may be more efficient in against the flinging. For far-fault earthquakes, base isolation may still be the best option to reduce vibration. However, due to the inclusion of the polymer and soft metal, the beam-column connector is less stiffer than the comparison specimen. Hence, the first resonant frequency of the specimen containing the composite connectors is smaller than that of the comparison specimen. The reduction of the first resonant frequency is 1\%. In other words, the total stiffness of the specimen with the composite connector is less than that of the comparison specimen. However, in this study, we experimentally demonstrate that the overall damping of the steel frame may be enhanced by using the composite connector, and its stiffness can be controlled through ‘microstructural design’ of the beam-column connector.

    TABLE OF CONTENTS Page CHINESE ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Goals and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Damping mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 HDHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.3 Vibration and structural dynamics in general . . . . . . . . . . . . 4 1.2.4 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Theoretical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Elasticity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Elastoplastic material models . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Introduction of elastoplastic . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Yield surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 Von Mises criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.4 Hardening models . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.5 Perfect (or ideal) plasticity . . . . . . . . . . . . . . . . . . . . . . 11 2.2.6 Isotropic hardening . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.7 Tangent data (linear isotropic hardening) . . . . . . . . . . . . . . 12 2.2.8 Hardening function data . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.9 Kinematic hardening . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Plasticity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Viscoelasticity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.1 Some remarks about viscoelastic materials . . . . . . . . . . . . . 17 2.4.2 Generalized Maxwell (GM) model . . . . . . . . . . . . . . . . . . 17 2.4.3 Standard linear solid model . . . . . . . . . . . . . . . . . . . . . 20 2.4.4 Kelvin-Voigt model . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.5 Frequency domain analysis and damping . . . . . . . . . . . . . . 22 2.4.6 18-branch GM model rubber . . . . . . . . . . . . . . . . . . . . . 23 2.5 Energy dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.6 Fast Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1 Background of finite element analysis . . . . . . . . . . . . . . . . . . . . 27 3.1.1 Interpolation and shape functions . . . . . . . . . . . . . . . . . . 27 3.1.2 Discretization for elasticity analysis . . . . . . . . . . . . . . . . . 28 3.1.3 Discretization for plasticity analysis . . . . . . . . . . . . . . . . . 29 3.2 Numerical solvers used in COMSOL . . . . . . . . . . . . . . . . . . . . . 30 3.2.1 BDF vs. Generalized- . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.2 The Generalized- method . . . . . . . . . . . . . . . . . . . . . . 31 3.2.3 Backward differentiation formulas (BDFs) . . . . . . . . . . . . . 32 4 Results and discussion for computational work . . . . . . . . . . . . . . . . . 34 4.1 Material parameters used in the numerical work . . . . . . . . . . . . . . . 34 4.1.1 Rubber (silicon gel) . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1.2 Metal materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1.3 Hypothetical SLS material . . . . . . . . . . . . . . . . . . . . . . 35 4.2 2D material level analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2.1 Sub-resonant frequency simulation of rubber . . . . . . . . . . . . 38 4.2.2 Simplify 18-branch GM model to SLS . . . . . . . . . . . . . . . . 40 4.3 3D component level analysis . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3.1 Effective stiffness of 3D composite connector . . . . . . . . . . . . 40 4.3.2 Model building of final design . . . . . . . . . . . . . . . . . . . . 47 4.3.3 Energy dissipation of tin tube . . . . . . . . . . . . . . . . . . . . 47 4.4 3D cantilever beam analysis . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.5 3D portal frame simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.5.1 Simulation of portal frame with different type of joints under loading 51 4.6 3D Frame analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.6.1 Critical load calculation . . . . . . . . . . . . . . . . . . . . . . . 55 4.6.2 Eigenfrequency simulation of 3D frame . . . . . . . . . . . . . . . 58 4.6.3 Square wave simulation of 3D frame model . . . . . . . . . . . . . 60 4.6.4 Sub-frequency simulation of 3D frame . . . . . . . . . . . . . . . . 61 4.7 2D two-story frame simulation . . . . . . . . . . . . . . . . . . . . . . . . 64 5 Shaking-table experiment, results and discussion . . . . . . . . . . . . . . . 70 5.1 Earthquake background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2 Introduction of instrument in shaking table experiment . . . . . . . . . . . 71 5.2.1 Background of uniaxial seismic table . . . . . . . . . . . . . . . . 71 5.2.2 Background of seismic accelerometer . . . . . . . . . . . . . . . . 73 5.2.3 Background of laser displacement sensor . . . . . . . . . . . . . . 73 5.3 Material parameters used in the shaking table experiment . . . . . . . . . . 76 5.3.1 Silicone rubber . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.3.2 Tin, Sn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.3.3 Conventional steel . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.4 Steel frame experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.4.1 Square wave shaking table test . . . . . . . . . . . . . . . . . . . . 82 5.4.2 Possible parametric resonance in shaking table experiment . . . . . 84 5.4.3 Sinusoidal wave experiment . . . . . . . . . . . . . . . . . . . . . 85 5.4.4 Seismic simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.4.5 Important discussion . . . . . . . . . . . . . . . . . . . . . . . . . 87 6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 APPENDICES Appendix A: Some mathematic equations used in this thesis . . . . . . . . . . 99 Appendix B: Two-dimensional 2-story frame (large cross-section) . . . . . . . 106 Appendix C: Homemade codes used in the study . . . . . . . . . . . . . . . . 110 Appendix D: Operation of shaking table . . . . . . . . . . . . . . . . . . . . . 115 Appendix E: Laminated rubber bearing experiment . . . . . . . . . . . . . . . 137 Appendix F: Raw data of shaking table experiment . . . . . . . . . . . . . . . 140 Appendix G: Presentation slide . . . . . . . . . . . . . . . . . . . . . . . . . 158 VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

    [1] NASA, “website.” http://denali.gsfc.nasa.gov/dtam/seismic/, 2004.
    [2] R. W. Clough and J. Penzien, Dynamics of Structures, Third edition. Berkeley, USA: Computers and Structures, Inc., 2003.
    [3] M. Symans, F. Charney, A. Whittaker, M. Constantinou, C. Kircher, M. Johnson, and R. McNamara, “Energy dissipation systems for seismic applications: current practice and recent developments,” Journal of Structural Engineering, vol. 134, no. 1, pp. 3–21, 2008.
    [4] R. N. Capps and L. L. Beumel, “Dynamic mechanical testing,” in ACS Symposium Series, pp. 63–78, American Chemical Society (ACS), May 1990.
    [5] L. H. Sperling, “Sound and vibration damping with polymers,” in ACS Symposium Series, pp. 5–22, American Chemical Society (ACS), May 1990.
    [6] Z.-D. Xu, D.-H. Jia, and X.-C. Zhang, “Performance tests and mathematical model considering magnetic saturation for magnetorheological damper,” Journal of Intelligent Material Systems and Structures, vol. 23, pp. 1331–1349, May 2012.
    [7] J. Yang, T. Ono, and M. Esashi, “Energy dissipation in submicrometer thick singlecrystal silicon cantilevers,” Journal of Microelectromechanical Systems, vol. 11, pp. 775–783, Dec 2002.
    [8] Z. Haiyang, Y. Xu, Z. Chao, and J. Dandan, “Shaking table tests for the seismic response of a base-isolated structure with the SSI effect,” Soil Dynamics and Earthquake Engineering, vol. 67, pp. 208–218, Dec 2014.
    [9] S. Mahmoud, P. E. Austrell, and R. Jankowski, “Non-linear behaviour of base-isolated building supported on flexible soil under damaging earthquakes,” KEM, vol. 488-489, pp. 142–145, Sep 2011.
    [10] C.-C. Chou and P.-T. Chung, “Development of cross-anchored dual-core self-centering braces for seismic resistance,” Journal of Constructional Steel Research, vol. 101, pp. 19–32, Oct 2014.
    [11] C.-C. Chou, Y.-C. Chen, D.-H. Pham, and V.-M. Truong, “Steel braced frames with dual-core SCBs and sandwiched BRBs: Mechanics, modeling and seismic demands,” Engineering Structures, vol. 72, pp. 26–40, Aug 2014.
    [12] Z.-D. Xu, X.-H. Huang, Y.-F. Guo, and S.-A. Wang, “Study of the properties of a multi-dimensional earthquake isolation device for reticulated structures,” Journal of Constructional Steel Research, vol. 88, pp. 63–78, Sep 2013.
    [13] R. Lakes, Viscoelastic Materials. New York, NY, USA: Cambridge University Press, 2009.
    [14] Y.-C. Wang and C.-C. Ko, “Energy dissipation of steel-polymer composite beamcolumn connector,” Steel and Composite Structures, vol. 18, pp. 1161–1176, May 2015.
    [15] A. S. Whittaker, V. V. Bertero, C. L. Thompson, and L. J. Alonso, “Seismic testing of steel plate energy dissipation devices,” Earthquake Spectra, vol. 7, pp. 563–604, Nov 1991.
    [16] S.-J. Chen, C. H. Yeh, and J. M. Chu, “Ductile steel beam-to-column connections for seismic resistance,” Journal of Structural Engineering, vol. 122, pp. 1292–1299, Nov 1996.
    [17] L. Calado, J. M. Proenca, M. Espinha, and C. A. Castiglioni, “Hysteretic behavior of dissipative welded fuses for earthquake resistant composite steel and concrete frames,” Steel Compos. Struct., vol. 14, pp. 547–569, Jun 2013.
    [18] R. D. Cook, An Introduction to Numerical Analysis. United States: Wiley, 2002.
    [19] E. O. Brigham, The Fast Fourier Transform and its Applications. United States: Prentice-Hall International, Inc., 1988.
    [20] K. L. Shen and T. T. Soong, “Modeling of viscoelastic dampers for structural applications,”
    J. Eng. Mech., vol. 121, pp. 694–701, Jun 1995.
    [21] S. Park, “Analytical modeling of viscoelastic dampers for structural and vibration control,” International Journal of Solids and Structures, vol. 38, pp. 8065–8092, Nov 2001.
    [22] J. Simo and T. Hughes, Computational Inelasticity. New York: Springer, 1998.
    [23] J. Lubliner, Plasticity Theory. New York, USA: Macmillan Publishing Company, 2008.
    [24] N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior.
    Springer Berlin Heidelberg, 1989.
    [25] K. C. Chang, T. T. Soong, S.-T. Oh, and M. L. Lai, “Effect of ambient temperature on viscoelastically damped structure,” Journal of Structural Engineering, vol. 118, pp. 1955–1973, Jul 1992.
    [26] COMSOL, “website.” http://www.comsol.com, 2015.
    [27] J. Chung and G. M. Hulbert, “A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized- method,” Journal of Applied Mechanics, vol. 60, no. 2, pp. 371–375, 1993.
    [28] K. E. Atkinson, An Introduction to Numerical Analysis. Singapore: Wiley, 1989.
    [29] K. C. Chang, T. T. Soong, S.-T. Oh, and M. L. Lai, “Seismic behavior of steel frame with added viscoelastic dampers,” Journal of Structural Engineering, vol. 121, pp. 1418–1426, oct 1995.
    [30] C. Y. Yu, Viscoelastic Energy Dissipation of Metal-polymer. Tainan, Taiwan: National Cheng Kung University Master’s Degree Thesis, Jul 2015.
    [31] S. Rajasekaran, Structural Dynamics of Earthquake Engineering. Cambridge, UK: Woodhead Publishing, 2009.

    下載圖示 校內:2021-01-29公開
    校外:2021-01-29公開
    QR CODE