簡易檢索 / 詳目顯示

研究生: 呂嘉輝
Lu, Chia-Hui
論文名稱: 相異結構之氧化鋅薄膜微機電氣體感測器之研究
Zinc Oxide Thin Film MEMS Gas Sensor with Different Structure
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 97
中文關鍵詞: 微機電系統氧化鋅矽穿孔氣體感測器
外文關鍵詞: MEMS, ZnO, TSV, Gas sensors
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中製作了三種不同 MEMS 結構的氧化鋅薄膜,第一種主
    要利用磁控濺鍍法沈積 4%氬氧比的氧化鋅薄膜作為氣體感測膜,製作了 微機電氣體感測器。第二種也是利用磁控濺鍍法沉積純氬氣的二氧化錫 薄膜,並與 4%氬氧比的氧化鋅薄膜做結合形成雙面感應式異質接面氧化 鋅/二氧化錫薄膜微積電氣體感測器,最後利用銅電鍍所製作之矽穿孔基 版與微機電氣體感測器做結合形成第三種結構,取代傳統的打線手法, 達成垂直整合的功用。
    第一個部分主要探討單層氧化鋅薄膜微積電氣體感測器的材料特性、 電性與氣體量測特性。在結構特性方面,磁控濺鍍法沈積的氧化鋅薄膜 呈現多晶型態,在組成分析上則確認了成功沈積未摻雜的氧化鋅薄膜。 在氣體感測器的電性方面,以電子束蒸鍍系統沈積之鎳電極微加熱器的 功耗在感測膜溫度 150 度到 350 度分別是 130mW 到 317mW,而操作溫 度在 150 度以下氧化鋅薄膜阻值約為 2 GΩ,在 180 度以上才會出現半導體特性。在氣體量測部分針對乙醇、硫化氫與一氧化氮氣體進行感測, 在最佳的操作溫度下,對於 5ppm 的酒精會有 52.59 的感測特性,而對於 200ppb 的硫化氫及一氧化氮則分別有 23.7%及 143.41%的響應。
    第二個部分則是在探討雙面感應式異質接面氧化鋅/二氧化錫薄膜微 積電氣體感測器的材料特性、電性與氣體量測特性。在結構特性方面, 磁控濺鍍法沈積的二氧化錫薄膜呈現非晶狀態,而組成分析上確立了成 功沈積了未摻雜的二氧化錫薄膜,在氣體感測器的電性方面,以電子束 蒸鍍系統沈積之鎳電極微加熱器的功耗在感測膜溫度 50 度到 250 度分別 是 37mW 到 392mW,氣體量測方面,在低溫下就能感測一氧化氮氣體, 且在最佳的操作溫度情況下對於 200 ppb 的一氧化氮有 898.27%的響應, 特別的是此氣體感測器僅可用於一氧化氮的量測,具有絕佳的選擇性。
    第三個部分製作了銅電鍍矽穿孔基版,目的是取代傳統的封裝打線技 術,透過結合銅電鍍矽穿孔與氣體感測器成功進行量測,之後對於銅電 鍍矽穿孔結構進行表面分析,可以知道矽穿孔表面孔徑為 469 微米,蝕 刻深度約為 700 微米。

    In this paper, three different zinc oxide thin film MEMS structure were fabricated. The first one mainly used a magnetron sputtering system to deposit a 4% argon-oxygen ratio of zinc oxide as a gas sensing film to fabricate a MEMS gas sensor. The second is to deposit tin dioxide film by magnetron sputtering system and combine it with a 4% argon-oxygen ratio of zinc oxide thin film to form a bifacial sensing sides ZnO/SnO2 MEMS gas sensor. Finally, we combine the electroplating copper TSV structure with the MEMS gas sensor to form a third structure, which replaces the conventional wire bonding method and achieves the function of vertical integration.
    In the first part of the experiment, we discuss the material properties, electrical properties and gas measurement characteristics of single-layer zinc oxide thin film MEMS gas sensors. The zinc oxide thin film deposited by magnetron sputtering system shows polycrystalline, and the elemental analysis confirmed the successful deposition of undoped zinc oxide. The power consumption of the micro-heater deposited by the E-beam evaporation system is 130mW to 317mW at a sensing film temperature of 150 to 350 degrees, respectively. The zinc oxide has a resistance of about 2 GΩ in 150 degrees, and its semiconductor characteristic occurs above 180 degrees. For C2H5OH, H2S and NO gas sensing, we found that the gas sensors made by us
    have the best sensitivity at the temperature of 350°C, 250°C, 250°C ,
    respectively.
    In the second part of the experiment, we discuss the material properties, electrical properties and gas measurement characteristics of bifacial sensing sides ZnO/SnO2 MEMS gas sensors. The tin dioxide thin film deposited by magnetron sputtering system shows amorphous, and the elemental analysis confirmed the successful deposition of undoped tin dioxide. The power consumption of the micro-heater deposited by the E-beam evaporation system is 37mW to 392mW at a sensing film temperature of 50 to 250 degrees, respectively. For gas sensing, bifacial sensing sides ZnO/SnO2 MEMS gas sensors can detect low concentration of NO gas (5ppb) and work at low temperature (100°C).
    In the third part of the experiment, we discuss the MEMS gas sensor with Cu TSV structure which can replace conventional wire bonding technique. The diameter and length of Cu TSV structure is about 470μm and 700μm, respectively. Sensing performance is also investigated in this study.

    摘要 I Abstract III 誌謝 V Contents VI Figure Captions IX Table Captions XII Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Background of Zinc Oxide 5 1.3 Overview of Through Silicon via 6 1.4 Overview of Gas Sensor 8 1.5 Organization of Thesis 11 Chapter 2 Relevant Theory and Experimental System 13 2.1 Theory of Gas Sensors 13 2.2 Important Parameters of Gas Sensors 15 2.2.1 Sensitivity 15 2.2.2 Response Time & Recovery Time 16 2.2.3 Working Temperature 17 2.2.4 Selectivity 17 2.3 Related Mechanism of MEMS gas sensors 18 2.3.1 Bosch DRIE and Cryogenic DRIE 18 2.3.2 Resistive Microheater 22 2.4 Fabrication Systems of Gas Sensors 24 2.4.1 The RCA wet bench system 24 2.4.2 The Furnace Tube System 26 2.4.3 Photolithography and Mask Aligner 27 2.4.4 Plasma-Enhanced Chemical Vapor Deposition & Inductively Coupled Plasma Etching System 28 2.4.5 The RF Magnetron Sputter System 30 2.4.6 E-beam and Thermal Evaporation System 31 2.5 Analyst Systems 33 2.5.1 Scanning Electron Microscope (SEM) 33 2.5.2 X-ray Diffraction Analysis (XRD) 34 2.5.3 Infrared Thermal Imager 35 Chapter 3 Fabrication and Characteristics of single ZnO Thin Film MEMS Gas Sensors 37 3.1 Growth of Sample 37 3.1.1 Growth of ZnO thin film Sample 37 3.2 Characteristics of ZnO thin film 38 3.2.1 Structural Characteristics 38 3.2.2 Elemental Analysis 39 3.3 Fabrication of ZnO Thin Film MEMS Gas Sensor with Cr/Ni as Electrodes 41 3.4 Basic Characteristics of ZnO Thin Film MEMS Gas Sensor 48 3.4.1 Electrical Characteristic of the Microheater 48 3.5 Sensing Characteristic of ZnO Thin Film MEMS Gas Sensors 50 3.5.1 Measurement Setup 50 3.5.2 Operating Temperature Influence 51 Chapter 4 Fabrication and Characteristics of Bifacial Sensing Sides ZnO/SnO2 MEMS Gas Sensor 57 4.1 Growth of Sample 57 4.1.1 Growth of SnO2 thin film Sample 57 4.2 Characteristics of SnO2 thin film 58 4.2.1 Structural Characteristics 58 4.2.2 Elemental Analysis 59 4.3 Fabrication of Bifacial Sensing Sides ZnO/SnO2 MEMS Gas Sensor 61 4.4 Basic Characteristics of Bifacial Sensing Sides ZnO/SnO2 MEMS Gas Sensor 69 4.4.1 Electrical Characteristic of the Microheater 69 4.4.2 Analysis of the gas sensor structure 71 4.5 Sensing Characteristic of bifacial sensing sides ZnO/SnO2 MEMS Gas Sensor 73 4.5.1 Operating Temperature Influence 73 4.5.2 Concentration Influence 75 Chapter 5 Fabrication and Characteristics of gas sensor with TSV structure 78 5-1 Fabrication of Electroplating Cu TSV Structure 78 5.2 Characteristics of Electroplating Cu TSV Structure 83 5.2.1 Structural Characteristics 83 5.2.2 Elemental Analysis 85 5.2.3 Reliable Analysis 88 Chapter 6 Conclusion and Future Work 89 6.1 Conclusion 89 6.2 Future Work 90 Reference 92 Fig. 1-1. 2014-2021 gas sensor forecast 3 Fig. 1-2. Kaohsiung gas explosion [8] 3 Fig. 1-3. The schematic diagram of wurtzite structure of ZnO 5 Figure 1-4. Schematic diagram of two-dimensional packing and three-dimensional packaging 7 Figure 1-5. conventional wire bonding 7 Figure 1-6. Comparison of TSV and traditional packing 8 Fig 1-7. History of different kinds of gas sensors 11 Fig. 2-1. The schematic diagram of sensing mechanism. 15 Fig. 2-2. The schematic diagram of suspended structure. 19 Fig. 2-3. The schematic diagram of Bosch DRIE. 20 Fig. 2-4. The schematic diagram of Cryogenic DRIE. 22 Fig .2-5 Wet bench 25 Fig. 2-6. High temperature and low pressure furnace tubes 27 Fig. 2-7 The mask aligner system 28 Fig. 2-8. The plasma enhanced chemical vapor deposition & ion coupled plasma etching system 29 Fig. 2-9. The schematic diagram of RF sputtering system 31 Fig. 2-10 Thermal Evaporation System 32 Fig. 2-11 E-beam Evaporation System 32 Fig. 2-12. The schematic diagram of SEM system. 34 Fig. 2-13. The X-ray diffraction plots 35 Fig. 2-14. The Infrared Thermal Imager System 36 Fig. 3-1. The schematic diagram of ZnO thin film sample. 38 Fig. 3-2. XRD spectrum of ZnO thin film which ratio of argon flow and oxygen flow is 48:2 39 Fig. 3-3. Energy-dispersive X-ray spectroscopy spectrum of ZnO thin film 40 Fig. 3-4. ZnO thin film MEMS gas sensor experiment and parameter 46 Fig. 3-5. ZnO thin film MEMS gas sensor 47 experimental process 47 Fig. 3-6. Infrared thermal image of MEMS gas sensor at 350℃ 49 Fig. 3-7. Schematic diagram of gas sensing measurement system. 51 Fig. 3-8. Sensing transient response of 5 ppm ethanol at different operating temperature 54 Fig. 3-9. Comparison response of 5 ppm ethanol at different operating temperature 54 Fig. 3-10. Sensing transient response of 200 ppb hydrogen sulfide at different operating temperature 55 Fig. 3-11. Comparison response of 200 ppb hydrogen sulfide at different operating temperature 55 Fig. 3-12. Sensing transient response of 200 ppb nitric oxide at different operating temperature. 56 Fig. 3-13 Comparison response of 200 ppb nitric oxide at different operating temperature 56 Fig. 4-1. The schematic diagram of SnO2 thin film sample. 58 Fig. 4-2. XRD spectrum of SnO2 thin film which ratio of argon flow and oxygen flow is 100:0 59 Fig. 4-3. Energy-dispersive X-ray spectroscopy spectrum of SnO2 thin film 60 Fig. 4-4. Bifacial Sensing Sides ZnO/SnO2 MEMS Gas Sensor 67 experiment and parameter 67 Fig. 4-5. Bifacial Sensing Sides ZnO/SnO2 MEMS Gas Sensor experimental process 68 Fig. 4-6. Infrared thermal image of bifacial sensing sides ZnO/SnO2 MEMS gas sensor at 150℃ 69 Fig. 4-7 Sensor of micro-heater power consumption with different temperatures 70 Fig. 4-8 OM of (a) micro-heater and electrodes 72 (b)fail electrodes(c) top view of the suspend structure 72 (d) backside of the suspend structure 72 Fig. 4-9 OM of (a)over etching (b)incomplete etching (c) Infrared thermal image of incomplete etching 72 Fig. 4-10 Sensing transient response of 200 ppb nitric oxide at different operating temperature 74 Fig. 4-11 Comparison response of 200 ppb nitric oxide at different operating temperature 74 Fig. 4-12 Response of nitric oxide with different concentration at 100℃ 76 Fig. 4-13 Comparison response of nitric oxide with different concentration at 100℃ 76 Fig. 4-14 Response of nitric oxide with different low concentration at 100℃ 77 Fig. 4-15 Comparison response of nitric oxide with different low concentration at 100℃ 77 Fig. 5-1. Electroplating Cu TSV structure experiment and parameter 82 Fig. 5-2. Electroplating Cu TSV structure experimental process 83 Fig. 5-3. SEM image of (a) top-view electroplating Cu TSV structure 84 (b) cross-section electroplating Cu TSV structure (c) top-view of electroplating Cu and Sn TSV structure (d) cross-section gas sensor bonding on electroplating Cu TSV structure 84 Fig. 5-4. Energy-dispersive X-ray spectroscopy spectrum of Cu TSV structure 86 Fig. 5-5. Energy-dispersive X-ray spectroscopy spectrum of tin ball 87 Fig. 5-6 Sensing transient response of 200 ppb nitric oxide at 200℃ 88 Table 1-1. Allowable concentration criteria for hazardous substances 4 Table 1-2. Comparison of each type gas sensor 10 Table 1-3. Comparison between MEMs gas sensors and conventional gas sensors 10 Table.2-1. The system and parameter of RCA clean. 25 Table 3-1. Weight percentage and atomic percentage of ZnO thin film 40 Table 3-2. Corresponding applied voltage and power consumption at different temperatures. 49 Table 4-1. Weight percentage and atomic percentage of SnO2 thin film 60 Table 4-2. Corresponding applied voltage and power consumption at different temperatures. 70 Table 5-1. Weight percentage and atomic percentage of Cu TSV structure 86 Table 5-2. Weight percentage and atomic percentage of tin ball 87

    [1] K. Lee, D.H. Baek, H. Na, J. Choi, and J. Kim, “Simple fabrication method. of silicon/tungsten oxide nanowires heterojunction for NO2 gas sensors,” SENSORS AND ACTUATORS B-CHEMICAL, Vol. 265, 2018, pp. 522-528
    [2] R. L. Vander Wal, G. W. Hunter, J. C. Xu, … & T. M. Ticich, “Metal-oxide. nanostructure and gas-sensing performance,” Sensors and Actuators B: Chemical, vol. 138, issue. 1, pp. 113-119 (2009).
    [3] C. L. Cheng, H. C. Chang, C. I. Chang, & W. L. Fang, “Development of a. CMOS MEMS pressure sensor with a mechanical force-displacement transduction structure,” Journal of Micromechanics and Microengineering, vol. 15, no. 12 (2015).
    [4] G. Kumar, & A. Raman, “Pressure sensor based on MEMS nano-cantilever. beam structure as a heterodielectric gate electrode of dopingless TFET,” Superlattices and Microstructures, vol. 100, pp.535-547 (2016).
    [5] J. Q. Huang, F. Li, M. Zhao, & K. Wang, “A Surface Micromachined CMOS. MEMS Humidity Sensor,” micromachines, vol. 6, issue 10, pp. 1569-1576 (2015).
    [6] T. A. Vincent, & J. W. Gardner, “A low cost MEMS based NDIR system for. the monitoring of carbon dioxide in breath analysis at ppm levels,” Sensors and Actuators B: Chemical, vol. 236, pp. 954-964 (2016).
    [7] http://www.yole.fr/Gas_Sensor_ConsumerMarket.aspx#.XNP6wS_3VQI
    [8] https://www.storm.mg/article/436389
    [9] Standards of Permissible Exposure Limits at Job Site, Ministry of Labor.
    [10] J. L. G. Fierro, Metal Oxides: Chemistry & Applications. CRC Press. (2006).
    [11] Ashrafi, A. B. M. A., and C. Jagadish. "Review of zincblende ZnO: Stability of metastable ZnO phases." Journal of Applied Physics 102.7 (2007): 4
    [12] Kumar, Rajesh, et al. "Zinc oxide nanostructures for NO 2 gas–sensor. applications: a review." Nano-Micro Letters 7.2 (2015): 97-120.
    [13] D. C. Kim, W. S. Han, B. H. Kong, … & C. H. Hong, “Fabrication of the. hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition,” Physica B: Condensed Matter, vol. 401, pp. 386-390 (2007).
    [14] S. J. Young, & L. T. Lai, “Field emission properties of ZnO nanosheets. grown on a Si substrate,” MICROELECTRONIC ENGINEERING, vol. 148, pp. 40-43 (2015).
    [15] L. E. Greene, M. Law, B. D. Yuhas, & P. D. Yang, “ZnO-TiO2 core-shell. nanorod/P3HT solar cells,” Journal of Physical Chemistry C, vol. 111, issue 50, pp. 18451-18456 (2007).
    [16] L. Zhu, & W. Zeng, “A novel coral rock-like ZnO and its gas sensing,” Materials Letters, vol. 209, pp. 244-246 (2017).
    [17] T. K. Cheng, and K. N. Chen, “Wafer-level bonding/stacking technology for 3D integration,” Microelectronics Reliability, vol. 5, no. 4, pp.481–488, Apr. 2010.
    [18] Gagnard, Xavier, and Thierry Mourier. "Through silicon via: From the CMOS imager sensor wafer level package to the 3D integration." Microelectronic Engineering 87.3 (2010): 470-476.
    [19] Lau, John H. "Evolution, challenge, and outlook of TSV, 3D IC integration and 3D silicon integration." 2011 international symposium on advanced packaging materials (APM). IEEE, 2011.
    [20] Lau, John H. "Overview and outlook of through-silicon via (TSV) and 3D integrations." Microelectronics International 28.2 (2011): 8-22.
    [21] Lu, Chun-Liang, et al. "Through-Silicon via Submount for Flip-Chip LEDs." ECS Journal of Solid State Science and Technology6.12 (2017): R159-R162.
    [22] https://www.wirebonddemo.com/video/fine_pitch_wire_bonding2
    [23] Ramm P, and Klumpp A, “Through-silicon via technologies for extreme. miniaturized 3D integrated wireless sensor systems (e-CUBES),” IEEE IITC, pp.7-9, Jun. 2008.
    [24] Al-Sarawi S, Abbott D, and Franzon P, “A review on 3-D packaging. technology,” IEEE Transactions on Components and Packaging Technologies, part B, vol. 21, no. 1, pp.2-14, Feb. 1998.
    [25] Koyanagi M, Kurino H, Lee KW, Sakuma K, Miyakawa N, and Itani H, “Future system-on- silicon LSI chips,” IEEE Micro, vol. 18, no. 4, pp.17-22, Jul. 1998.
    [26] https://dev776.semi.org/en/2017-european-3d-summit-making-advanced-packaging-great-again-0
    [27] Z. Yunusa, M. N. Hamidon, A. Kaiser, & Z. Awang, “Gas Sensors: A. Review,” Sensors & Transducers, vol. 168, issue 4, pp. 61-75 (2014).
    [28] W. H. Brattain, & J. Bardeen, “Surface properties of germanium,” Bell. System Technical Journal, pp. 32 (1953).
    [29] European Office, Oststrasse, Figaro Products Catalogue, Figaro Gas Sensors 2000-Series, Figaro Engineering Inc., Dusseldorf, Germany, 2006.
    [30] H. Nguyena, T. Q. Chu, D. H. Nguyen, … & V. H. Nguyen, “Controllable. growth of ZnO nanowires grown on discrete islands of Au catalyst for realization of planar-type micro gas sensors,” Sensors and Actuators B: Chemical, vol. 193, pp. 888-894 (2014).
    [31] Belmonte, J. C., Manzano, J., Arbiol, J., Cirera, A., Puigcorbe, J., Vila, A., ... & Morante, J. R. (2006). Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2. Sensors and Actuators B: Chemical, 114(2), 881-892.
    [32] J. Y. Liu, C. Wang, Q. Y. Yang, ... & G. Y. Lu, “Hydrothermal synthesis. and gas-sensing properties of flower-like Sn3O4,” Sensors and Actuators B: Chemical, vol. 224, pp. 128-133 (2016).
    [33] Cui, J., Shi, L., Xie, T., Wang, D., & Lin, Y. (2016). UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures. Sensors and Actuators B: Chemical, 227, 220-226.
    [34] Lu, G., Xu, J., Sun, J., Yu, Y., Zhang, Y., & Liu, F. (2012). UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sensors and Actuators B: Chemical, 162(1), 82-88.
    [35] F. B. Gu, H. T. Wang, D. M. Han, & Z. H. Wang, “Enhancing the sensing. performance of SnO2 inverse opal thin films by In and Au doping,” Sensors and Actuators B: Chemical, vol. 245, pp. 1023–1031 (2017).
    [36] S. Ghosh, C. Roy Chaudhuri, R. Bhattacharya, H. Saha, & N. Mukherjee. “Palladium−Silver-Activated ZnO Surface: Highly Selective Methane Sensor at Reasonably Low Operating Temperature,” ACS Applied Materials & Interfaces, vol. 6, pp. 3879−3887 (2014).
    [37] M. J. Walker, “Comparison of Bosch and Cryogenic processes for. patterning high aspect ratio features in silicon,” SPIE Proceedings, vol. 4407, pp. 89-99 (2001).
    [38] T. Alexandra, M. Thomas, & S. Christoph, “Ultrathin SnO2 gas sensors. fabricated by spray pyrolysis for the detection of humidity and carbon monoxide,” Sensors and Actuators B: Chemical, vol. 134, issue 2, pp. 796-802 (2008).
    [39] W. H. Bragg, & W. L. Bragg, “The Reflexion of X-rays by Crystals,” Proc. R. Soc. Lond. A., vol. 88, pp. 428-438 (1913).
    [40] Kim, S. K., Jeong, S. Y., & Cho, C. R. (2003). Structural reconstruction of hexagonal to cubic ZnO films on Pt/Ti/SiO 2/Si substrate by annealing. Applied Physics Letters, 82(4), 562-564.
    [41] Wan, Q., Li, Q. H., Chen, Y. J., Wang, T. H., He, X. L., Li, J. P., & Lin, C. L. (2004). Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 84(18), 3654-3656.
    [42] Wang, L., Kang, Y., Liu, X., Zhang, S., Huang, W., & Wang, S. (2012). ZnO nanorod gas sensor for ethanol detection. Sensors and Actuators B: Chemical, 162(1), 237-243.
    [43] Wagh, M. S., Patil, L. A., Seth, T., & Amalnerkar, D. P. (2004). Surface cupricated SnO2–ZnO thick films as a H2S gas sensor. Materials Chemistry and Physics, 84(2-3), 228-233.
    [44] Yoon, J. H., & Kim, J. S. (2011). Study on the MEMS-type gas sensor for detecting a nitrogen oxide gas. Solid State Ionics, 192(1), 668-671.
    [45] Sonker, R. K., Sharma, A., Shahabuddin, M., Tomar, M., & Gupta, V. (2013). Low temperature sensing of NO2 gas using SnO2-ZnO nanocomposite sensor. Adv. Mat. Lett, 4, 196-201.
    [46] Lu, C. L., Chang, S. J., Weng, T. C., & Hsueh, T. J. (2018). A Bifacial SnO 2 Thin-Film Ethanol Gas Sensor. IEEE Electron Device Letters, 39(8), 1223-1225.

    下載圖示 校內:2024-06-27公開
    校外:2024-06-27公開
    QR CODE