研究生: |
李孟昆 Li, Meng-kun |
---|---|
論文名稱: |
應用於頻帶複製技術之數位廣播系統分析與合成正交鏡像濾波器組快速演算法與硬體設計 An Fast Algorithm and Hardware Design for Analysis and Synthesis Quadrature Mirror Filter Banks on the SBR in DRM |
指導教授: |
雷曉方
Lei, Sheau-Fang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 數位全球無線電廣波系統 、頻帶複製法 、快速傅立葉轉換 、正交鏡像濾波器組 |
外文關鍵詞: | Digital Radio Mondiale(DRM), Spectral Band Replication(SBR), Fast Fourier Transform(FFT), Quadrature Mirror Filterbanks(QMF) |
相關次數: | 點閱:92 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提出一個分析與合成正交鏡像濾波器組(QMF)的快速演算法和硬體設計,在數位廣波(DRM)中的頻帶複製法(SBR)裡會大量使用到此濾波器組,前後處理與核心快速傅立葉轉換(FFT)運算,以這兩種快速演算法實現正交鏡像濾波器組。在FFT核心,本論文使用Radix-2架構,可以使分析正交鏡像濾波器組(AQMF)減少最後一級蝴蝶運算的加法量,並可以計算出合成正交鏡像濾波器組(SQMF)。此外,本論文使用Lifting Scheme乘法技巧,以降低複數乘法所造成的實數乘法與加法量。在32通道的AQMF與原始定義運算量相比,乘法量降低87.99%,加法量降低73.51%,係數減少95.31%。在32通道的SQMF與Hsu et al.[13]文獻相比,乘法量降低51.54%,加法量降低21.12%,係數減少78.57%。因此,在未來的DRM應用中,本論文提出的快速演算法與其它文獻的方法相比,有更低的運算量與更高的相容性。
This brief presents a novel fast algorithm derivation and structure design of analysis and synthesis quadrature mirror filterbanks (SQMF) on the spectral band replication (SBR) in Digital Radio Mondiale (DRM). After pre- and post-procedures, a Fourier transform-based (FT-based) computational kernel was required to construct two types of fast algorithms that offered certain advantages. The proposed method employs a modified radix-2 fast Fourier transform (FFT) for analysis QMF (AQMF) to reduce the number of additions at the last stage of the butterfly, and adopts a radix-2 FFT to calculate the SQMF coefficients. In addition, a well-known lifting scheme (LS) was applied to reduce numerous multiplication and addition calculations. Compared with the original calculations for the long transform length, all multiplication, addition, and coefficient operations for the Proposed method AQMF had 87.99%, 73.51%, and 95.31% reductions, respectively. Compared with the fast SQMF algorithm by Huang et al., the Proposed method for SQMF reduces 51.54% of the multiplication, 21.12% of the addition, and 78.57% of the coefficients. Therefore, the proposed fast QMF algorithm is a better solution than other approaches for future DRM applications.
[1]ETSI ES 201 980 V3.2.1, Digital Radio Mondiale (DRM); System Specification, France: European Telecommunications Standards Institute, 2012.
[2]ISO/IEC 14496-3:2005, “Information Technology—Generic Coding of Moving Pictures and Associated Audio Information—Part 3: Advanced Audio Coding (AAC), Subpart 4: General Audio Coding (GA)—AAC, TwinVQ, BSAC,” 2005.
[3]Information Technology-Coding of Audio-Visual Objects-Part 3 Audio, Amendment 1 Bandwidth Extension, ISO IEC 14496-3 2001 Amd. 1 2003, Nov. 2003.
[4]ISO/IEC 14496-3:2005/FDAM9, “Information Technology—Generic Coding of Moving Pictures and Associated Audio Information—Part 3: Advanced Audio Coding (AAC), Amendment 9: Enhanced Low Delay AAC,” 2007.
[5]http://www.ysps.tp.edu.tw/seed/Detail.asp?TitleID=501
[6]“工農學報,” 台北市立松山高級工農職業學校, 2009.
[7]Noll, P., "MPEG digital audio coding," Signal Processing Magazine, IEEE , vol.14, no.5, pp.59, 81, Sep 1997.
[8]音視訊處理實驗室, “實習單元-1.1 遮罩效應Masking Effect,” 國立中央大學, 2009.
[9]張金山, “DRM數位廣播帶外公率降低研究,” 大同大學, 通訊工程研究所, 碩士論文, July 2007.
[10]蕭刷琛, 張芳甄, 顏妏倩, “Speech-Compression 期末報告,” 國立成功大學, 電機工程學系, 2012.
[11]黃麗芳, “利用快速碼薄搜尋之AMR至G.729A語音轉碼,” 國立中央大學, 通訊工程研究所, 碩士論文, June 2007.
[12]“The Heritage of the QMF-Transform in aacPlus and MPEG Surround,” Developer Conference, Texas Instruments, 2007.
[13]莊文河, “遞迴式離散傅立葉正、逆轉換及修正型離散餘弦正、逆轉換之快速演算法推演與其綠能設計之實現,” 國立成功大學, 電機工程學系, 碩士論文, July 2010.
[14]R. Gluth, "Regular FFT-related transform kernels for DCT/DST-based polyphase filter banks," in Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 International Conference on, 1991, pp. 2205-2208 vol.3.
[15]H. W. Hsu, C. M. Liu and W. C. Lee, “Fast complex quadrature mirror filterbanks for MPEG-4 HE-AAC,” presented at AES121st Convention, San Francisco, CA, USA, October 2006.
[16]J. Huang, G. Du, D. Zhang, Y. Song, L. Geng and M. Gao, "VLSI design of resource shared complex-QMF bank for HE-AAC decoder," ASIC, 2009. ASICON '09. IEEE 8th International Conference on , vol., no., pp.796,799, 20-23 Oct 2009.
[17]M. Jun and T. Kun, “A Fast Algorithm for DCT IV,” Signal processing (Chinese)(1999-02-014), vol. 15, no. 2, Jun 1999.
[18]A. T. Fam, “Efficient complex matrix multiplication,” IEEE Transactions on Computers, vol. 37, no. 7, pp. 877-879, 1988.
[19]I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps,” Journal of Fourier Analysis and Applications, vol. 4, no. 3, pp. 247-269, 1998.
[20]S. Oraintara, Y. J. Chen and T. Q. Nguyen, “Integer fast Fourier transform," Signal Processing, IEEE Transactions on, vol. 50, no. 3, pp. 607–618, Mar 2002.
[21]X. Gu, M. Dick, Z. Kurtisi, U. Noyer and L. Wolf, “Network-centric Music Performance: Practice and Experiments,” Communications Magazine, IEEE, vol. 43, no. 6, pp. 86-93, June 2005.
[22]李岳書, “適用於數位/行動電視廣播系統(DVB-T/H)之高效能可變點數快速傅立葉轉換處理器,” 逢甲大學, 電子工程學系電子研究所, 碩士論文, Jan 2009.
[23]S. C. Lai, S. F. Lei, C. L. Chang, C. C. Lin and C. H. Luo, “Low computational complexity, low power, and low area design for the implementation of recursive DFT and IDFT algorithms,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 12, pp.921-925, 2009.
[24]S. C. Lai, W. H. Juang, C. L. Chang, C. C. Lin, C. H. Luo, and S. F. Lei, “Low-Computation cycle, Power-Efficient, and Reconfigurable Design of Recursive DFT for Portable Digital Radio Mondiale Receiver,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 8, pp. 647–651, August 2010.
[25]S. C. Lai, W. H. Juang, C. C. Lin, C. H. Luo and S. F. Lei, “High-Throughput, Power-Efficient, Coefficient-Free and Reconfigurable Green Design for Recursive DFT in a Portable DRM Receiver,” International Journal of Electrical Engineering, vol. 18, no.3, pp. 137–145, June 2011.
[26]S. C. Lai, Y. S. Lee and S. F. Lei, “Low-Power and Optimized VLSI Implementation of Compact RDFT Processor for the Computations of DFT and IMDCT in a DRM and DRM+ Receiver,” J. Low Power Electron. Appl., vol. 3, no. 2, pp. 99-113, May 2013.