簡易檢索 / 詳目顯示

研究生: 張家銘
Zhang, Jia-Ming
論文名稱: 以兩階段自舉控制抑制切換式電容轉換器之突波電流
Two-Step Bootstrap Control for Spike Current Suppression in Switched-Capacitor Converter
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 113
中文關鍵詞: 切換式電容直流-直流轉換器自舉電路降低突波電流技術可變頻率調變控制
外文關鍵詞: switched-capacitor, DC-DC converter, bootstrap circuit, spike current reduction technique, variable frequency modulation control
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Abstract II 誌謝 XV 目錄 XVI 表目錄 XIX 圖目錄 XX 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 論文章節概要 5 第二章 切換式電容降壓轉換器簡介 6 2.1 直流降壓轉換器種類比較 6 2.2 切換式電容降壓轉換器原理與架構 11 2.2.1 電路架構與基本操作原理 11 2.2.2 不同降壓比例轉換架構 13 2.3 切換式電容降壓轉換器等效電路模型 15 2.3.1 理想等效電路模型 15 2.3.2 輸出阻抗與操作頻率關係 23 2.4 切換式電容降壓轉換器穩壓控制技術介紹 25 2.5 切換式電容降壓轉換器電路轉換效率分析 30 2.5.1 電路效率分析 30 2.5.2 功率損耗分析 33 第三章 切換式電容降壓器之突波電流分析與挑戰 37 3.1 突波電流產生原理與分析 37 3.2 突波電流峰值與能量損耗計算 41 3.2.1 突波電流峰值計算 41 3.2.2 突波電流產生之能量損耗計算 44 3.3 突波電流引起之輸出電壓漣波 46 3.4 以兩階段導通控制技術抑制突波電流 47 3.4.1 兩階段導通控制技術原理分析 47 3.4.2 兩階段導通控制訊號設計 50 第四章 兩階段自舉控制技術之切換式電容降壓器 55 4.1 電路架構 55 4.2 兩階段自舉控制技術電路原理與設計 56 4.2.1 自舉電路 57 4.2.2 兩階段自舉控制電路 59 4.2.3 兩階段自舉控制參數設計 63 4.3 子電路設計 66 4.3.1 誤差放大器 66 4.3.2 壓控環形振盪器 67 4.3.3 非重疊時脈產生電路 69 第五章 模擬及量測結果 70 5.1 模擬結果 70 5.1.1 穩態模擬波形 70 5.1.2 暫態模擬波形 72 5.2 測量結果 75 5.2.1 穩態測量波形 76 5.2.2 暫態測量波形 79 5.3 比較與分析 80 第六章 結論與未來展望 83 6.1 結論 83 6.2 未來展望 84 參考文獻 85

    [1] 王廷維, "Buck Conver Design-Power MOS Layout," 國立交通大學奈米電子與晶片系統實驗室, 2019.
    [2] H. P. Le, S. R. Sanders, and E. Alon, "Design Techniques for Fully Integrated Switched-Capacitor DC-DC Converters," IEEE Journal of Solid-State Circuits, vol. 46, no. 9, pp. 2120-2131, 2011.
    [3] Y. Lu, J. Jiang, and W.-H. Ki, "A multiphase switched-capacitor DC–DC converter ring with fast transient response and small ripple," IEEE Journal of Solid-State Circuits, vol. 52, no. 2, pp. 579-591, 2016.
    [4] M. Shoyama and T. Ninomiya, "Output Voltage Control of Resonant Boost Switched Capacitor Converter," in 2007 Power Conversion Conference - Nagoya, pp. 899-903, 2007.
    [5] L. G. Salem and R. Jain, "A novel control technique to eliminate output-voltage-ripple in switched-capacitor DC-DC converters," in 2011 IEEE International Symposium of Circuits and Systems (ISCAS), pp. 825-828, 2011.
    [6] D. El-Damak, S. Bandyopadhyay, and A. P. Chandrakasan, "A 93% efficiency reconfigurable switched-capacitor DC-DC converter using on-chip ferroelectric capacitors," in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 374-375, 2013.
    [7] T. M. Andersen et al., "4.7 A sub-ns response on-chip switched-capacitor DC-DC voltage regulator delivering 3.7W/mm2 at 90% efficiency using deep-trench capacitors in 32nm SOI CMOS," in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 90-91, 2014.
    [8] X. Li, Y. Tang, X. Zhang, Y. Zhang, and S. Chen, "Input Current Ripple Reduction of Switching Capacitor Converter by Dividing the Output Capacitor," in 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), pp. 3519-3524, 2020.
    [9] F. Zhang, L. Du, F. Z. Peng, and Z. Qian, "A New Design Method for High-Power High-Efficiency Switched-Capacitor DC–DC Converters," IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 832-840, 2008.
    [10] H. P. Le, J. Crossley, S. R. Sanders, and E. Alon, "A sub-ns response fully integrated battery-connected switched-capacitor voltage regulator delivering 0.19W/mm2 at 73% efficiency," in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 372-373, 2013.
    [11] T. Souvignet, B. Allard, and S. Trochut, "A Fully Integrated Switched-Capacitor Regulator With Frequency Modulation Control in 28-nm FDSOI," IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 4984-4994, 2016.
    [12] R. Jain et al., "A 0.45–1 V Fully-Integrated Distributed Switched Capacitor DC-DC Converter With High Density MIM Capacitor in 22 nm Tri-Gate CMOS," IEEE Journal of Solid-State Circuits, vol. 49, no. 4, pp. 917-927, 2014.
    [13] J. Jiang, X. Liu, C. Huang, W. H. Ki, P. K. T. Mok, and Y. Lu, "Subtraction-Mode Switched-Capacitor Converters With Parasitic Loss Reduction," IEEE Transactions on Power Electronics, vol. 35, no. 2, pp. 1200-1204, 2020.
    [14] S. Bang, A. Wang, B. Giridhar, D. Blaauw, and D. Sylvester, "A fully integrated successive-approximation switched-capacitor DC-DC converter with 31mV output voltage resolution," in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 370-371, 2013.
    [15] 郭玠含, "適用於切換式電容直流電壓轉換器之降低輸出漣波技術," 中正大學電機工程學系學位論文, 2016.
    [16] M. D. Seeman and S. R. Sanders, "Analysis and Optimization of Switched-Capacitor DC–DC Converters," IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 841-851, 2008.
    [17] W. Wei-Chung and R. M. Bass, "Analysis of charge pumps using charge balance," in 2000 IEEE 31st Annual Power Electronics Specialists Conference. Conference Proceedings (Cat. No.00CH37018), vol. 3, pp. 1491-1496, 2000.
    [18] Y. Tsividis, "Principles of operation and analysis of switched-capacitor circuits," Proceedings of the IEEE, vol. 71, no. 8, pp. 926-940, 1983.
    [19] J. Kwong et al., "A 65nm Sub-Vt Microcontroller with Integrated SRAM and Switched-Capacitor DC-DC Converter," in 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, pp. 318-616, 2008.
    [20] H. P. Le, M. Seeman, S. R. Sanders, V. Sathe, S. Naffziger, and E. Alon, "A 32nm fully integrated reconfigurable switched-capacitor DC-DC converter delivering 0.55W/mm2 at 81% efficiency," in 2010 IEEE International Solid-State Circuits Conference - (ISSCC), pp. 210-211, 2010.
    [21] Y. Lu, J. Jiang, and W. H. Ki, "A Multiphase Switched-Capacitor DC–DC Converter Ring With Fast Transient Response and Small Ripple," IEEE Journal of Solid-State Circuits, vol. 52, no. 2, pp. 579-591, 2017.
    [22] S. Bang, J. s. Seo, L. Chang, D. Blaauw, and D. Sylvester, "A Low Ripple Switched-Capacitor Voltage Regulator Using Flying Capacitance Dithering," IEEE Journal of Solid-State Circuits, vol. 51, no. 4, pp. 919-929, 2016.
    [23] K. H. Chen, C. C. Chien, H. H. Ho, and L. R. Huang, "Optimum power-saving method for power MOSFET width of one-cyde control DC-DC converters," in 2006 37th IEEE Power Electronics Specialists Conference, pp. 1-5, 2006.
    [24] K. Wing-Hung, S. Feng, and T. Chi-Ying, "Charge redistribution loss consideration in optimal charge pump design," in 2005 IEEE International Symposium on Circuits and Systems (ISCAS), vol. 2, pp. 1895-1898, 2005.
    [25] B. Razavi, "The Bootstrapped Switch [A Circuit for All Seasons]," IEEE Solid-State Circuits Magazine, vol. 7, no. 3, pp. 12-15, 2015.
    [26] Y. H. Lee et al., "A DVS Embedded Power Management for High Efficiency Integrated SoC in UWB System," IEEE Journal of Solid-State Circuits, vol. 45, no. 11, pp. 2227-2238, 2010.
    [27] O. T. C. Chen and R. R. B. Sheen, "A power-efficient wide-range phase-locked loop," IEEE Journal of Solid-State Circuits, vol. 37, no. 1, pp. 51-62, 2002.
    [28] Y. K. Ramadass, A. A. Fayed, and A. P. Chandrakasan, "A Fully-Integrated Switched-Capacitor Step-Down DC-DC Converter With Digital Capacitance Modulation in 45 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2557-2565, 2010.

    無法下載圖示 校內:2027-11-08公開
    校外:2027-11-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE