研究生: |
林靖峰 Lin, Chin-Feng |
---|---|
論文名稱: |
工業燃燒爐之積污實驗模擬 |
指導教授: |
林大惠
none |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 積污 、燃燒爐 |
外文關鍵詞: | furnance, deposite |
相關次數: | 點閱:42 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工業燃燒爐中的積污成因很多,不完全燃燒的碳顆粒、未完全燃燒的油滴均會造成積污的生成。本研究以積污模擬器進行工業燃燒爐燃燒室的積污模擬,針對不同燃燒條件,探討主燃燒區不同空氣量、不同位置及不同燃料油對於積污生成量的影響。實驗過程中採用分段空氣燃燒法,減少主燃燒區的空氣供給量,使主燃燒區燃燒狀況較差,減少之空氣轉而由燃燒爐中段注入,燃燒未完全的氣體將在燃燒爐中段進行第二次燃燒,不致影響氣體排放濃度。本研究採用分段空氣燃燒法之目的,在於加速積污之生成。
結果顯示,分段空氣分率愈高,則主燃燒區燃燒愈不完全,所生成之積污量愈多,積污層愈黏厚;分段空氣分率較低時,所生成的積污量較少,且較為乾燥。積污模擬器位置對於積污生成亦有相當的影響。當積污模擬器較靠近火焰側時,所生成的積污量較多,積污的型態也較為黏稠。積污之化學組成亦隨分段空氣分率及積污模擬器位置而改變,分段空氣分率愈高且愈靠近火焰側,其積污的碳、氫、氮含量愈高。積污粉末中,以碳的成分最高,約佔80~90%,氫約佔2~3%,氮約佔1%。針對不同燃料油進行積污模擬時,採用具有抗積污效果之磁性油基流體 (NanoFe)燃料油,確可得到積污減量之效。
本實驗重現性良好,實驗誤差在7%以內。證明此系統確可快速而有效達成積污模擬分析。
Various cases of deposits formation in a furnace was analyzed and compared experimentally by means of water-cooled deposits collector, which collected soot, smoke, and unburned oil drops in the combustion gases. Over-fired air (OFA) scheme of burning was employed, in which the air supply to the main section was reduced to worsen its combustion efficiency and thus facilitate deposits formation. A certain amount of secondary air was then injected to the middle section, where incompletely burned gases could be further oxidized. In this study, the effects of secondary/primary air ratio, deposits collection position, and fuel type on the properties of the sdeposits was discussed.
The results showed that the thickness abs stickiness of the deposits grew and as secondary/primary air ratio was increased or as the deposit collection position was closer to the flame; in the mean time, the carbon, hydrogen, and nitrogen concentrations in the deposits would be higher. In general, the deposits contained 80~90% carbon, 2~3% hydrogen, and 1%nitrogen in mass. From fuel type testing, it was seen that fuel oils containing NanoFe had indeed reduced the amount of deposits.
With less than 7% error and good repeatability, the water-cooled deposits collector was found to be a fast and reliable deposits simulator.
1. Kuo, K.K., Principles of Combustion, John Wiley & Sons., 1986.
2. Glassman, I., Combustion, Academic Press, 1977.
3. Vuthaluru, H.B., and Wall, T.F., “Ash Formation and Deposition from a Victorian Brown Coal-Modeling and Prevention.” Fuel Processing Tech., Vol.53, pp.215-233, 1998.
4. Tomeczek, J., Palugniok, H., and Ochman, J., “Modeling of Deposits Formation on Heating Tubes in Pulverized Coal Boilers.” Fuel, Vol. 83, pp.213-221, 2004.
5. Wanger, H. G., “Soot Formation in Combustion.” 17th Symp. (International) on Combustion., pp.3-19, The Combustion Institute, Pittsburgh, PA, 1978.
6. Kittelson, D.B., Ambs, J.L., and Hassan, H., “Particulate Emissions from Diesel Engines: Influence of In-Cylinder Surface.” SAE Paper, No.900645, 1990.
7. Erickson, T.A., Allan, S.E., McCollor, Hurley, J.P., Srinivasachar, S., Kang, D.G., Baker, J.E., Morgan, M.E., Johnson, S.A., and Borio, R., “Modeling of Fouling and Slagging in Coal-Fired Utility Boilers.“ Fuel Processing Tech., Vol.44, pp.155-171, 1995.
8. Raask, E., Mineral Impurities in Coal Combustion, Hemisphere, 1985.
9. Wessel, R.A., and Righi, J., “Generalized Correlations for Inertial Impaction of Particles on a Circular Cylinder.“ Aerosol Sci. Tech., Vol.9, pp.2-60, 1988.
10. Srinivasachar, S., Senior, C.L., Helble, J.J., and Moore, J.W., “A Fundamental Approach to the Prediction of Coal Ash Deposit Formation in Combustion System.” 24th Symp. (International) on Combust., pp.1179-1187, The Combustion Institute, Pittsburgh, PA, 1992.
11. Srinivasachar, S., Helble, J.J. and Boni, A.A., “An Experimental Study of the Inertial Deposition of Ash under Coal Combustion Conditions.” 23rd Symp. (International) on Combust., The Combustion Institute, Pittsburgh, PA, 1990.
12. Veerapaneni, S., and Wiesner, M.R., “Particle Deposition on an Infinitely Permeable Surface.” Journal of Colloid and Interface Sci., Vol.162, pp.110-122, 1994.
13. Bryers, R.W., Prog. “Fireside Slagging, Fouling, and High-Temperature Corrosion of Heat-Transfer Surface due to Impurities in Steam-Raising Fuels.” Energy Combust. Sci., Vol.22, pp.29-120, 1996.
14. Lee, B.E., Fletcher, C.A.J., Shin, S.H., and Kwon, S.B., “Computational Study of Fouling Deposit due to Surface-Coated Particles in Coal-Fired Power Utility Boilers.” Fuel, Vol.81, pp.2001-2008, 2002.
15. Wall, T.F., Bhattacharya, S.P., Baxter, L.L., Richards, G., and Harb, J.N., “The Character of Ash Deposits and the Thermal Performance of Furnaces.” Fuel Processing Tech., Vol.44, pp.143-153, 1995.
16. Wall, T.F., Bhattacharya, S.P., Zhang, D.K., Gupta, R.P., and He, X., Prog. “The Properties and Thermal Effects of Ash Deposits in Coal Fired Furnaces.” Energy Combust. Sci., Vol.19, pp.487-504, 1993.
17. Wain, S.E., Livingston, W.R., Sanyal, A., and Williamson, J., “Thermal and Mechanical Properties of Boiler Slags of Relevance to Sootblowing.” Engineering Foundation, ASME, pp.459-470, 1991.
18. Richter, W., Payne, P., and Heap, M.P., “Influence of Thermal Properties of Wall Deposits on Performance of Pulverized Fuel Fired Boiler Combustion Chambers.” American Chemical Society, pp.375-383, 1986.
19. 「汽電共生廠之運轉效率及經濟性之分析」期末報告,東雲股份有限公司,民國八十七年一月。
20. 「空氣污染物排放防制技術輔導暨示範計畫─固定污染源NOx減量最佳可行控制技術輔導」成果報告,EPA-86-FA11-09-84,行政院環保署,民國八十六年六月。
21. 「空氣污染物排放防制技術示範計畫─固定污染源氮氧化物減量及最佳可行控制技術示範」期末報告,EPA-87-FA13-03-82,行政院環保署,民國八十七年五月。
22. 楊喬然,「分段空氣燃燒與超燃燒之技術發展」,國立成功大學機械工程學系碩士論文,民國九十二年五月。
23. England, G. C., Heap, M. P., Pershing, D. W., and Nihart, R. K., ”Mechanisms of NOx Formation and Control:Alternative and Petroleum-Derived Liquid Fuel.” 18th Symp. (International) on Combustion., pp.163-174, The Combustion Institute, Pittsburgh, PA, 1981.