簡易檢索 / 詳目顯示

研究生: 羅元禧
Lo, Yuan-Si
論文名稱: 奈米粒子摻雜高分子薄膜之熱引致液晶配向研究
Studies of the thermally-induced liquid crystal alignment based on nanoparticle-doped polymer films
指導教授: 傅永貴
Fuh, Y.G.
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 71
中文關鍵詞: 預傾角奈米粒子
外文關鍵詞: pre-tilt angle, PVK, nanoparticle
相關次數: 點閱:64下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來產業及學術界對於研究高分子材料摻雜奈米粒子後,所表現出的複合材料特性,一直是個相當有趣的研究課題。其中高分子膜PVK [poly(N-vinyl carbazole)]作為配向膜的應用相當有趣,液晶分子沿著垂直於摩擦配向的方向排列,且加溫後因為微布朗運動使其配向的方向轉向平行於摩擦配向的方向。因此利用此熱效應的機制,搭配摻雜奈米粒子於PVK膜中,觀察其表現的物化性質,即為本論文研究目的。
    本論文將奈米粒子POSS 摻雜入高分子膜PVK中,將其塗佈於基板表面後製成樣品並注入液晶,研究該薄膜在熱處理前後對液晶配向的影響及其光電特性。在摻雜POSS粒子的PVK膜中,我們以化學方法將POSS粒子溶入PVK膜中,改變POSS粒子在PVK膜中的濃度,或者加熱該PVK膜,用以改變POSS分子長鏈在垂直方向的密度,進而影響水平及垂直配向力之間的競爭,觀察液晶配向預傾角的變化,利用1D-Dimos套裝軟體模擬所量測的電壓-穿透曲線與實驗值作比對,用來推測液晶預傾角的結果,由實驗結果得知預傾角的調控範圍利用改變POSS濃度的方法可從0°至86°,且在預傾角固定後加熱樣品,可降低液晶預傾角,此結果可在控制液晶預傾角的技術上提供一新方法。故利用該製程,製作一pi cell,量測並分析其光電特性;該方法亦可應用於製作其他元件上,如電控可變焦式液晶透鏡等。

    In recently, the research topics regarging the composite materials of the nanoparticle-doped polymer film have attracted much attention by the industrical and academic communities. Among them, the polymer film of poly(N-vinyl carbazole) (PVK) has been reported for use as a liquid crystal (LC) alignment. The mechanically rubbed PVK layer can induce a planar alignment of LCs with their director axis perpendicular to the direction of rubbing. Moreover, it is reported that the direction can be switched toward the rubbing direction by thermal treatment due to the micro-Brownian motion effect. According to the mechanism, it is motivated to study the physical and chemical properties of nanoparticle-doped PVK films before and after being thermal treatment.
    This thesis studies and reports the electro-optical properties and the effect of liquid crystal LC alignment resulted from the nanoparticles POSS-doped PVK film coated onto the substrates before and after being thermal treatment. In order to mix the nanoparticle-POSS into PVK material, a solvent was used to dissolve poss/pvk compound at various concentrations. Experimentally, the density of the main chains of POSS along the derection parallel to the normal of the substrate increases with the concentration of the doped POSS, and can be reduced by thermal treatment. After being thermal treatment, the homeotropic alignment anchoring will compete with the homogeneous one to induce LC pre-tilt angles. The transmission of the sample under the application of an AC voltage was measured and fitted with the simulated results obtained by 1D-DIMOS software to acquire the pretilt angle. The formed LC pretilt angle can be controlled from 0° to 86° by changing the POSS concentration without being thermal treatment. Moreover, with thermal treatment, the generated pretilt angles can be reduced. Notably,such a mechanism is a novel approach to control the LC pretilt angles. Accordingly, a π-cell was fabricated using this approach. Its electro-optical responses and properties were measured and discussed, it is believed that such an approach has potential for uses to fabricate other devices, such as electrically tunable focusing LC lens.

    摘要…………………………………………………………………………Ⅰ Abstract……………………………………………………………………Ⅱ 誌謝…………………………………………………………………………V 目錄…………………………………………………………………………V 圖目錄……………………………………………………………………V 第一章 簡介…………………………………………………………………1 1.1 前言……………………………………………………………………1 1.2 液晶簡介……………………………………………………………2 1.3 液晶定義……………………………………………………………3 1.4 液晶分類……………………………………………………………4 1.4.1 低分子液晶………………………………………………………5 1.4.2高分子液晶………………………………………………………8 1.5 液晶物理………………………………………………………………9 1.5.1 光學異向性與雙折射性………………………………………10 1.5.2 介電常數異向性(Δε)……………………………………………13 1.5.3 秩序參數(S)……………………………………………………14 1.5.4 黏滯係數………………………………………………………15 1.5.5 連續彈性體理論………………………………………………16 第二章 理論………………………………………………………………19 2.1高分子運動……………………………………………………19 2.1.1高分子熱效應運動造成結構影響因素…………………………19 2.2配向理論…………………………………………………………23 2.1.2基本功能…………………………………………………………23 2.2.2溝槽理論…………………………………………………………24 2.2.3液晶分子排列方式………………………………………………25 2.2.4 配向機制………………………………………………………27 2.3 Pi cell應用……………………………………………………………28 2.3.1 Pi cell操作模式…………………………………………………28 2.3.2 Pi cell 基本特性…………………………………………………30 2.3.3 Pi cell 轉態模式…………………………………………………32 第三章 實驗準備與過程…………………………………………………35 3.1 樣品製作……………………………………………………………35 3.1.1材料介紹…………………………………………………………35 3.1.2 樣品製程………………………………………………………39 3.1.3 空液晶盒的厚度量測…………………………………………43 3.2 實驗過程……………………………………………………………45 3.2.1 量測預傾角實驗組……………………………………………45 3.2.2 量測Pi cell反應時間實驗組……………………………………49 第四章 實驗結果與討論…………………………………………………52 4.1 POSS溶入PVK膜垂直配向的特性.………………………………52 4.2 利用POSS溶PVK膜調控液晶預傾角……………………………53 4.2.1 POSS濃度變化…………………………………………………54 4.2.2 摻雜奈米粒子之PVK膜之熱效應影響………………………58 4.3 應用與結果討論……………………………………………………63 第五章 總結和未來展望…………………………………………………67 5.1 總結…………………………………………………………………67 5.2 未來展望……………………………………………………………68 參考文獻……………………………………………………………………69

    1. P. J. Bos and K. R. Koehler/ Beran, Mol. Crystal.113, 329 (1984).
    2. M.Schadt, H.Seiberle, A.Schuster, Nature. 381, 212 (1996).
    3. Y. Iwamoto, Y. Toko, H. Hiramoto and Y. Iimura: Dig. Tech. Papers SID’00 31, 902 (2000).
    4. Y.-D. Chen, K.-T. Cheng, C.-K. Liu and Andy Y.-G. Fuh, Opt.Express 19, 2294 (2011).
    5. 松本正一、角田市良 合著, 劉瑞祥譯,“液晶之基礎與應用,”國立編譯館出版 (1996)
    6. 液晶應用技術研究會著, “最新液晶應用技術”, 建興出版社 (1997).
    7. 苗村 省平著,陳建銘譯, “液晶顯示器技術入門”,全華圖書 (2005)
    8. A.Munoz F, Opt. Lett. 26, 804 (2001)
    9. L. S. Goldberg and J. M. Schnur, U.S. patent 3, 771, 065 (1976)
    10. H. Finkelmann, Adv. Matter. 14, 1069 (2001)
    11. Iam-Choon Khoo, “Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena”, John Wiley & Sons Press, New York (1995)
    12. 黃貞瑜碩士論文, 摻雜奈米粒子高分子膜之液晶配向及其應用之研究 民國99年.
    13. 顧鴻壽 編著, “光電液晶平面顯示器-第二版”, 新文京開發出版社(2004).
    14. 胡賡祥 蔡珣 編著,“材料科學基礎”, 上海交通大學出版社 (2001).
    15. K. Nakajima, H. Wakemoto, S. Sato, F. Yokotani, S. Ishihara and Y. Matsuo, Mol. Cryst. Liq. Cryst. 180, 223 (1990).
    16. 景明化工股份有限公司, 嘉南營業所. 台南市安平區慶平路573號3樓.電話:(06)2999168.
    17. Berreman DE ,Phys. Rev. Lett. 28, 1683 (1972).
    18. P.Yeh, Introduction to Photorefractive Nonlinear Optics, John Wiley and sons, New York (1993).
    19. H.-Y. Tseng and K.-H. Hsieh,Ph.D. 台灣大學工學院高分子科學與工程學研究所碩士論文 (2009).
    20. S.-C. Jeng, S.-J. Hwang, Opt. Lett. 34, 4 (2009)
    21. N. Yoshida, S. Kobayashi, M. Nishikawa, Jpn. J. Appl. Phys. 34, pp. 4876 (1995)
    22. M. Kaczmarek and A. Dyadyusha, J. Nonlinear Opt. Phys. Mater. 12, 547 (2003).
    23. M. Hasegawa, Jpn. J. Appl. Phys. 39, 1272 (2000).
    24. T. Miyashita, Y. Yamaguchi, T. Uchida, Jpn. J. Appl. Phys. 34, L177 (1995).
    25. S.-H. Kim and L.-C. Chien, Jpn. J. Appl. Phys. 43, p.7643 (2004).
    26. P. D. Brimicimbe and E. P. RAYNES, Liq. Cryst. 32, 1273 (2005).
    27. P.D. Brimicimbe and E.P.RAYNES, Appl. Phys. Lett. 89, 031121 (2006).
    28. N.Nagae, T.Miyashita, T.Uchida, SID 2000 Digest, P26 (2000).
    29. S.-H. Lee, S.-H. Homg, J. D. Noh, H. Y. Kim, D. S. Seo, Jpn. J. Appl. Phys. 40, L389 (2001)
    30. Fion S.-Y. Yeung and H.-S. Kwok, Appl. Phys. Lett. 88, 063505 (2006).
    31. Y. Sun, H. Ma, Z. Zhang, and G. Fu, Appl. Phys. Lett. 92, 111117 (2008).
    32. N.-R. Lu, H. Xianyu, Thomas X.Wu, and S.-T. Wu, Appl. Phys. Lett. 101, 103110 (2007).

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE