| 研究生: |
林祐任 Lin, You-Ren |
|---|---|
| 論文名稱: |
協調可控整流器與可控換流器於
風力用發電機之控制 Coordination Control between Controllable Converter and Controllable Inverter of Autonomous Self-excited Induction Generators |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 可控整流器 、可控換流器 、數位信號處理器 |
| 外文關鍵詞: | controllable inverter, controllable converter, DSP |
| 相關次數: | 點閱:65 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文發展一套風力用獨立自激式感應發電機之可控整流器及可控換流器雙重協調控制策略,以改善風力用感應發電機之輸出電壓及頻率會隨不同轉速及不同負載條件而發生變動的特性。
所提出功率轉換器為兩級架構,利用數位信號處理器來協調控制各級的功率級電晶體,三相可控整流器將風力用感應發電機之交流電源轉換成穩定直流電壓,並有效改善發電端輸出功率因數;單相換流器則用來產生穩定交流電源輸出。
利用直交軸模型,分析可控整流器在不同工作模式及不同負載型式下的相對穩定度;採用三相a-b-c軸模型,結合三相感應發電機、可控整流器與可控換流器之模型,推導其完整數學模型來完成動態系統模擬。並與實測結果比較,以驗證本論文所提系統之可行性。
The aim of this thesis is to develop a coordination control between controllable converter and controllable inverter for autonomous wind self-excited induction generators whose both output voltage and frequency are inherently affected by random wind speed and connected loads.
The control of the proposed two power converters is to switch power transistors using a digital signal processor (DSP). Three-phase rectifier connected to the stator windings of the wind induction generator controls the dc-link voltage and corrects the output power factor of the studied generator. Single-phase inverter is employed to produce a fixed AC voltage and frequency for the connected loads.
This thesis uses a dq-axis model to analyze the stability of the converter-load system under different operating conditions. Three-phase induction-generator model, three-phase controllable rectifier model, and single-phase controllable inverter model are integrated to form a set of complete system dynamic equations for obtaining detailed simulations.
It can be concluded from the simulated and experimental results that the proposed wind energy conversion system can be practically applied to the studied wind induction generators under various operating conditions.
[1] Y. Li, D. M. Vilathgamuwa, and P. C. Loh, “Design, analysis, and real-time testing of a controller for multibus microgrid system,” IEEE Trans. Power Electronics, vol. 19, no. 5, Sep. 2004, pp. 1195-1204.
[2] S. R. Silva and R. O. Lyra, “PWM converter for excitation of wind induction generators,” in Proc. 1993 The European Power Electronics Association, pp. 174-178.
[3] S. K. Salman and A. L. J. Teo, “Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator,” IEEE Trans. Power Apparatus and Systems, vol. 18, no. 2, 2003, pp. 793-802.
[4] J. B. Ekanayake, L. Holdsworth, X. G. Wu, and N. Jenkins, “Dynamic modeling of doubly fed induction generator wind turbines,” IEEE Trans. Power Systems, vol. 18, no. 2, 2003, pp. 803 -809.
[5] Z. Chen, “Compensation Schemes for a SCR Converter in variable Speed Wind Power Systems,” IEEE Trans. Power Apparatus and Systems, vol. 19, no. 2, 2004, pp. 813-821.
[6] C. Grantham, D. Sutanto, and B. Mismail, “Steady-state and transient analysis of self-excited induction generators,” IEE Proc. Electric Power Applications, vol. 136, no. 2, 1989, pp. 61-67.
[7] R. Pena, R. Cardenas, R. Blasco, G. Asher, and J. Clare, “A cage induction generator using back to back PWM converters for variable speed grid connected wind energy system,” in Proc. IEEE IECON, vol. 2, Nov. 2001, pp. 1376-1381.
[8] T. Jin, L. Li, and K. Smedley, “A universal vector controller for three-phase PFC, APF, STATCOM, and grid-connected inverter,” in Proc. IEEE APEC, vol. 1, Nov. 2001, pp. 594-600.
[9] J. Rodríguez, J. Dixon, J. Espinoza, and P. Lezana, “PWM regenerative rectifiers: State of the art,” IEEE Trans. Industrial Electronics, vol. 52, no. 1, Feb. 2005, pp. 5-22.
[10] R. M. Hilloowala and A. M. Sharaf, “A utility interactive wind energy conversion scheme with an asynchronous DC link using a supplementary control loop,” IEEE Trans. Energy Conversion, vol. 9, Sep. 1994, pp. 558-563.
[11] R. M. Hilloowala and A. M. Sharaf, “A rule-based fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme,” IEEE Trans. Industry Applications, vol. 32, Jan./Feb. 1996, pp. 57-65.
[12] E. G. Marra and J. A. Pomilio, “Induction-generator-based system providing regulated voltage with constant frequency,” IEEE Trans. Industrial Electronics, vol. 47, Aug. 2000, pp. 908-914.
[13] Y. Nishida and M. Nakaoka, “Simplified predictive instantaneous current control for single-phase and three-phase and three-phase voltage-fed PFC converters,” IEE Proc., Electric Power Applications, vol. 144, Nov. 2000, pp. 46-52.
[14] J. Qian and F. C. Lee, “Voltage-source charge-pump power- factor-correction AC/DC converters,” IEEE Trans. Power Electronics, vol. 14, Mar. 1999, pp. 350-358.
[15] K. Hirachi and M. Nakaoka, “Novel PFC converter suitable for engine-driven generator-interactive three-phase power systems,” IEE Proc. Electric Power Applications, vol. 146, Mar. 1999, pp. 253-260.
[16] B. S. Lee, H. Jaehong, P. N. Enjeti, and I. J. Pitel, “A robust three-phase active power-factor-correction and harmonic reduction scheme for high power,” IEEE Trans. Industrial Electronics, vol. 46, Jun. 1999, pp. 483-494.
[17] J. Y. Lee, Y. M. Chang, and F. Y. Liu, “A new UPS topology employing a PFC boost rectifier cascaded high-frequency tri-port converter,” IEEE Trans. Industrial Electronics, vol. 46, Aug. 1999, pp. 803-813.
[18] G. Zhu, H. Wei, P. Kornetzky, and I. Batarseh, “Small-signal modeling of a single-switch AC/DC power-factor-correction circuit,” IEEE Trans. Power Electronics, vol. 14, Nov. 1999, pp. 1142-1148.
[19] Y. K. E. Ho, S. Y. R. Hui, and Y. S. Lee, “Characterization of single-stage three-phase power-factor-correction circuit using modular single-phase PWM DC-to-DC converters,” IEEE Trans. Power Electronics, vol. 15, Jan. 2000, pp. 62-71.
[20] S. Mobin, E. Hiraki, H. Takano, and M. Nakaoka, “Simulation method for DSP-controlled active PFC high frequency power converters,” IEE Proc. Electric Power Applications, vol. 147, May 2000, pp. 159-166.
[21] K. C. Lee, H. S. Chei, and B. H. Cho, “Power factor correction converter using delay control,” IEEE Trans. Power Electronics, vol. 15, Jul. 2000, pp. 626-633.
[22] J. Zhou, Z. Lu, Z. Lin, Y. Ren, Z. Qian, and Y. Wang, “Novel sampling algorithm for DSP controlled 2 kW PFC converter,” IEEE Trans. Power Electronics, vol. 16, Mar. 2001, pp. 217-222.
[23] J. Zhang, F. C. Lee, and M. M. Jovanovic, “Novel sampling algorithm for DSP controlled 2 kW PFC converter,” IEEE Trans. Power Electronics, vol. 18, Jan. 2003, pp. 44-50.
[24] J. Espinoza, G. Joos, M. Perez, and L. Moran, “Stability issues in three-phase PWM current/voltage source rectifiers in the regeneration mode,” in Proc. IEEE ISIE'00, vol. 2, 2000, pp. 453-458.
[25] F. R. Teodorescu and F. Blaabjerg, “Flexible control of small wind turbines with grid failure detection operating in stand-alone and grid-connected mode,” IEEE Trans. Power Electronics, vol. 19, no. 5, Sep. 2004, pp. 1323-1332.
[26] G. Iwanski and W. Koczara, “Sensorless stand alone variable speed system for distributed generation,” in Proc. Power Electronics Specialist Conf., Aachen, 2004, pp. 1915-1921.
[27] 李思賢,數位式單相低功率太陽光電能轉換系統,國立中山大學電機工程研究所碩士論文,民國九十二年七月。
[28] 呂紹豪,永磁同步電機之風力發電系統之研製,國立台灣科技大學電機工程研究所碩士論文,民國九十二年六月。
[29] 陳建智,三相昇壓型主動式整流器之分析L、C與參數設計,國立清華大學電機工程研究所碩士論文,民國九十年七月。
[30] 李東璟,以數位信號處理器完成風力用獨立自激式感應發電機可控整流器與切換自激電容器組之協調控制研究,國立成功大學電機工程研究所碩士論文,民國九十三年六月。
[31] 陳和文,獨立自激式感應發電機經受控型換流器供應獨立負載之研製,國立成功大學電機工程研究所碩士論文,民國九十一年五月。
[32] 曾祥賓,以數位信號處理器為基礎之風力發電用能量轉換系統,國立成功大學電機工程研究所碩士論文,民國九十二年六月。
DSP 相關書籍
[33] 李隆財、吳金勇,TMS320C240原理與實習,長高企業有限公司,民國八十九年。
[34] 龔應時、陳建武、徐永松,TMS320/C24x DSP控制器原理與應用,滄海書局,民國九十年。
[35] TMS320C24x DSP Controllers CPU, System, and Instruction Set, vol. 1, Texas Instruments, 1997.
[36] TMS320C24x DSP Controllers Peripheral Library and Specific Devices, vol. 2, Texas Instruments, 1997.
[37] TMS320C24x DSP Controllers Evaluation Module, Texas Instruments, 1997.