| 研究生: |
林子翔 Lin, Tzu-Hsiang |
|---|---|
| 論文名稱: |
奈米粒熱療加熱系統之中低頻磁場聚焦探頭設計 The Design of Medium- and Low-Frequency Magnetic Focusing Coils for Nanoparticle Thermotherapy Heating System |
| 指導教授: |
戴政祺
Tai, Cheng-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 電磁熱療 、奈米磁粒 、聚焦探頭 |
| 外文關鍵詞: | Magnetic Focusing Applicator, Thermotherapy, Magnetic nanoparticle |
| 相關次數: | 點閱:73 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米磁粒加熱系統主要是利用奈米級尺寸的氧化鐵(Fe3O4)顆粒,施加一中低頻交變磁場,使奈米磁粒產熱昇溫至42°C以上,將奈米磁粒引入腫瘤部位進行加熱,達到迫使腫瘤細胞衰亡的目的。本研究所採用的電路系統主要依據本實驗室設計的半橋加熱系統與市面上高週波加熱器,對加熱探頭部位進行改良,設計出具有較佳磁場聚焦效果的線圈銅管模型,藉以提高奈米磁粒加熱效率,並針對該模型使用有限積分法套裝軟體進行數值分析模擬。為了驗證設計的探頭在實作上是否與模擬的數值吻合,使用電磁感應法量測探頭幅射出的磁場,以此法所量測出來的數值與模擬數值相互驗證。依模擬結論提出兩種不同型態的加熱探頭新架構,未來將應用於奈米磁粒加熱系統上。
The notion of magnetic nanoparticle heating system is to inject nano-sized ferric oxide (Fe3O4) particles into the tumor, the particles are then heated up to 42°C and above, using a medium- and low-frequency alternating magnetic field, aiming to destroy the tumor cells. The major task of this study is to improve the efficiency of magnetic nanoparticle heating system via reform of the applicator. The half-bridge heating system developed in our laboratory is used in combination with high-frequency heating apparatus, which is available in the market, to propose models consist of brass tubes and coils to bring better magnetic focusing performance. These models are numerical analyzed and simulated with finite integration theory software. The electromagnetic induction method was applied to measure the magnetic field which the applicator radiates. This is to authenticate the simulated data obtained from numerical analysis software. Two different models were designed according to the conclusions from the simulations, and will be applied in magnetic nanoparticle heating system in the future.
[1] F. Sterzer, J. Mendecki, D. D. Mawhinney, E. Friedenthal, and A. Melman, "Microwave treatments for prostate disease," Microwave Theory and Techniques, IEEE Transactions on, vol. 48, pp. 1885-1891, 2000.
[2] F. Sterzer, "Microwave medical devices," Microwave Magazine, IEEE, vol. 3, pp. 65-70, 2002.
[3] T. Sato, A. Masai, Y. Ota, H. Sato, H. Matuski, T. Yanada, M. Sato, N. Kodama, and S. Minakawa, "The development of anticancer agent releasing microcapsule made of ferromagnetic amorphous flakes for intratissue hyperthermia," Magnetics, IEEE Transactions on, vol. 29, pp. 3325-3330, 1993.
[4] M. V. Prior, M. L. D. Lumori, J. W. Hand, G. Lamaitre, C. J. Schneider, and J. D. P. van Dijk, "The use of a current sheet applicator array for superficial hyperthermia: incoherent versus coherent operation," Biomedical Engineering, IEEE Transactions on, vol. 42, pp. 694-698, 1995.
[5] V. Nagesh, C. I. Tsien, T. L. Chenevert, B. D. Ross, T. S. Lawrence, L. Junick, and Y. Cao, "Radiation-Induced Changes in Normal-Appearing White Matter in Patients With Cerebral Tumors: A Diffusion Tensor Imaging Study," International Journal of Radiation Oncology, Biology, Physics, vol. 70, pp. 1002-1010, 2008.
[6] F. Montecchia, "Microstrip-antenna design for hyperthermia treatment of superficial tumors," Biomedical Engineering, IEEE Transactions on, vol. 39, pp. 580-588, 1992.
[7] H. Kaneko, K. Igarashi, K. Kataoka, and M. Miura, "Heat shock induces phosphorylation of histone H2AX in mammalian cells," Biochemical and Biophysical Research Communications, vol. 328, pp. 1101-1106, 2005.
[8] S. Jacobsen, P. R. Stauffer, and D. G. Neuman, "Dual-mode antenna design for microwave heating and noninvasive thermometry of superficial tissue disease," Biomedical Engineering, IEEE Transactions on, vol. 47, pp. 1500-1509, 2000.
[9] M. D. Hurwitz, I. D. Kaplan, G. K. Svensson, M. S. Hansen, and K. Hynynen, "Feasibility and patient tolerance of a novel transrectal ultrasound hyperthermia system for treatment of prostate cancer," International Journal of Hyperthermia, vol. 17, pp. 31-37, 2001.
[10] M. Hiraoka, M. Mitsumori, N. Hiroi, S. Ohno, Y. Tanaka, Y. Kotsuka, and K. Sugimachi, "Development of RF and microwave heating equipment and clinical applications to cancer treatment in Japan," Microwave Theory and Techniques, IEEE Transactions on, vol. 48, pp. 1789-1799, 2000.
[11] C. E. Coles, A. M. Moody, C. B. Wilson, and N. G. Burnet, "Reduction of radiotherapy-induced late complications in early breast cancer: the role of intensity-modulated radiation therapy and partial breast irradiation: Part II -- radiotherapy strategies to reduce radiation-induced late effects," Clinical Oncology, vol. 17, pp. 98-110, 2005.
[12] N. A. Brusentsov, L. V. Nikitin, T. N. Brusentsova, A. A. Kuznetsov, F. S. Bayburtskiy, L. I. Shumakov, and N. Y. Jurchenko, "Magnetic fluid hyperthermia of the mouse experimental tumor," Journal of Magnetism and Magnetic Materials, vol. 252, pp. 378-380, 2002.
[13] D. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, "Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles," Cancer Letters, vol. 209, pp. 171-176, 2004.
[14] S. S. Hall, A Commotion in the Blood: Life, Death, and the Immune System: Henry Holt & Company, 1997.
[15] W. Andrä and H. Nowak, Magnetism in medicine: a handbook: Wiley-VCH, 2007.
[16] F. H. James, N. S. Daniel, and M. S. Henry, "The use of gold nanoparticles to enhance radiotherapy in mice," Physics in Medicine and Biology, vol. 49, p. N309, 2004.
[17] 許誌剛,"組織微波熱療法之分析" 桃園:國立中央大學,2005。
[18] 胡裕德,"微波熱療法治癌用之環形微帶幅射器" 臺北:私立大同工學院電機工程研究所,1984。
[19] F. K. Storm, Hyperthermia in cancer therapy. Boston: G.K. Hall, 1983.
[20] B. J. Jarosz, "Feasibility of ultrasound hyperthermia with waveguide interstitial applicator," Biomedical Engineering, IEEE Transactions on, vol. 43, pp. 1106-1115, 1996.
[21] B. M. Jane, P. Douglas, B. P. Ted, and M. H. George, "Treatment of superficial human neoplasms by local hyperthermia induced by ultrasound," Cancer, vol. 43, pp. 188-197, 1979.
[22] 胡永成,"全身熱療對免疫功能的影響"1),國外醫學:腫瘤學分冊,第12冊, 92-95頁,1995。
[23] A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch, and R. Felix, "Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia," Journal of Magnetism and Magnetic Materials, vol. 225, pp. 118-126, 2001.
[24] M. Babincov, P. Sourivong, D. Leszczynska, and P. Babinec, "Blood-specific whole-body electromagnetic hyperthermia," Medical Hypotheses, vol. 55, pp. 459-460, 2000.
[25] R. Hergt and S. Dutz, "Magnetic particle hyperthermia--biophysical limitations of a visionary tumour therapy," Journal of Magnetism and Magnetic Materials, vol. 311, pp. 187-192, 2007.
[26] R. K. M. D. Gilchrist, R. B. S. Medal, W. D. M. D. Shorey, R. C. M. D. Hanselman, J. C. M. D. Parrott, and C. B. M. D. Taylor, "Selective Inductive Heating of Lymph Nodes," Annals of Surgery, vol. 146, pp. 596-606, 1957.
[27] A. Jordan, R. Scholz, P. Wust, H. Fähling, J. Krause, W. Wlodarczyk, B. Sander, T. Vogl, and R. Felix, "Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo," International Journal of Hyperthermia, vol. 13, pp. 587-605, 1997.
[28] A. Jordan, R. Scholz, M. Koch, M. Lein, S. Deger, J. Roigas, K. Jung, and S. Loening, "Evaluation of Magnetic Fluid Hyperthermia in a Standard Rat Model of Prostate Cancer," Journal of Endourology, vol. 18, pp. 495-500, 2004.
[29] M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang, and N. Gu, "Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field," Journal of Magnetism and Magnetic Materials, vol. 268, pp. 33-39, 2004.
[30] A. Ito, H. Honda, and T. Kobayashi, "Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression " Cancer Immunology, Immunotherapy, vol. 55, pp. 320-328, 2005.
[31] 蘇信華,"奈米磁粒熱療感應加熱系統之研製" 台南:成功大學電機工程學系, 2008。
[32] 蕭正昌,戴政祺,王威智,楊明長,"應用於腫瘤熱療之奈米磁粒加熱系統研製",生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,台灣大學,台北,2006。
[33] 陳建璋,"半橋串聯共振式磁奈米粒熱療加熱系統研製" 台南:成功大學,2007。
[34] 陳俊成,"應用於奈米磁粒之半橋串聯諧振式雙頻耦合熱療加熱系統" 台南:成功大學電機工程學系,2008。
[35] 陳明坤,戴政祺,"半橋式串連共振變流器於磁性奈米粒子熱療系統之應用",生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,台灣大學,台北, 2006。
[36] V. S. Zaitsev, D. S. Filimonov, I. A. Presnyakov, R. J. Gambino, and B. Chu, "Physical and Chemical Properties of Magnetite and Magnetite-Polymer Nanoparticles and Their Colloidal Dispersions," Journal of Colloid and Interface Science, vol. 212, pp. 49-57, 1999.
[37] A. Henglein, "Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles," Chemical Reviews, vol. 89, pp. 1861-1873, 2002.
[38] 鍾秉憲,劉全璞,"鈷奈米粒子之選擇性物理沈積探討",材料年會論文集,2003。
[39] I. Dumazet-Bonnamour and P. Le Perchec, "Colloidal dispersion of magnetite nanoparticles via in situ preparation with sodium polyoxyalkylene di-phosphonates," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 173, pp. 61-71, 2000.
[40] S. Chikazumi, 磁性物理學:聯經出版社,1982。
[41] J. Lee, T. Isobe, and M. Senna, "Preparation of Ultrafine Fe3O4Particles by Precipitation in the Presence of PVA at High pH," Journal of Colloid and Interface Science, vol. 177, pp. 490-494, 1996.
[42] 莊萬發,超微粒子理論應用:復漢出版社,1995。
[43] R. Kotitz, P. C. Fannin, and L. Trahms, "Time domain study of Brownian and Neel relaxation in ferrofluids," Journal of Magnetism and Magnetic Materials, vol. 149, pp. 42-46, 1995.
[44] 蕭正昌,"應用於腫瘤熱療之奈米磁粒加熱系統研製" 台南:成功大學電機工程學系,2006。
[45] R. Hergt, W. Andra, C. G. d'Ambly, I. Hilger, W. A. Kaiser, U. Richter, and H. G. Schmidt, "Physical limits of hyperthermia using magnetite fine particles," Magnetics, IEEE Transactions on, vol. 34, pp. 3745-3754, 1998.
[46] T. Weiland, "A discretization model for the solution of Maxwell's equations for six-component fields," Archiv fuer Elektronik und Uebertragungstechnik, vol. 31, pp. 116-120, 1977.
[47] M. Clemens and T. WEILAND, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetics Research, PIER, vol. 32, pp. 65-87, 2001.
[48] 李智慧,唐靖宇,張倫,"有限積分理論(FIT)及其在腔體計算中的應用" 強激光與粒子束,第14冊,155-160頁,2002。
校內:2059-07-27公開