| 研究生: |
張峰達 Chang, Feng-Ta |
|---|---|
| 論文名稱: |
使用改良式反覆學習滑動控制之循跡精度改善研究 Study on Contouring Accuracy Improvement using Modified Iterative Learning Sliding Mode Control |
| 指導教授: |
鄭銘揚
Cheng, Ming-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 速度觀測器 、梯度下降法 、反覆學習控制 、滑動控制 、減顫滑動控制 、反覆學習滑動控制 |
| 外文關鍵詞: | Velocity observer, gradient method, iterative learning control, sliding mode control, iterative learning sliding mode control |
| 相關次數: | 點閱:194 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
反覆學習滑動控制應用於電腦數值控制的機電整合系統,能提供良好的控制能力,同時學習並補償工具機在執行相同任務時所遭受的周期性干擾量,能使系統的循跡精度逐代提升。然而,直接對系統設計反覆學習滑動控制時,會需要多狀態回授,因此回授資訊的品質將影響控制效能。在本論文的應用中,以速度回授影響最大,所以本論文透過改良速度估測方法改善反覆學習滑動控制的能力,並搭配四種不同速度估測法的實驗,驗證本論文提出之基於梯度下降法之速度觀測器,能提供較優異的速度回授品質,並同時讓反覆學習滑動控制有更佳的循跡控制能力。另外,有鑑於基本滑動控制具有顫動效應,對高精度循跡運動有嚴重影響,故本論文根據模糊理論及NURBS參數式曲線,分別提出模糊減顫滑動架構及NURBS減顫滑動架構,並透過實驗驗證,搭配這兩種減顫架構之反覆學習滑動控制,可以更進一步降低循跡運動過程中的追蹤誤差。
Iterative learning sliding mode control (ILSMC) is a methodology particularly suitable to cope with periodic disturbance. However, when there is high frequency disturbance in the system, ILSMC becomes ineffective in estimating external disturbance. This is mainly because high frequency disturbance can compromise the accuracy of velocity estimation. The degradation of the accuracy of velocity estimation not only affects the accuracy of estimated disturbance value but also hinders the performance of switching force. In order to cope with this disadvantage, this thesis uses four different types of strategy to improve velocity estimation.The experimental results have verified that the quality of velocity feedback signal can efficiently enhance estimating accuracy for periodic disturbance of ILSMC. Another disadvantage of ILSMC is that it inherits the chattering effect of sliding mode control, which exhibits high frequency oscillations. In order to cope with this disadvantage, this thesis proposes two different types of boundary layer design. In the first scheme, fuzzy logic is used to design saturation function which is in boundary layer. The main idea behind the design is to use human control intuition and logic to adjust the internal structure of boundary layer. Although fuzzy saturation function can reduce chattering effect, it doesn’t work well with machine learning. Therefore, this thesis proposes a scheme that adopts NURBS parametric curve to design a smoother saturation curve. This scheme not only reduces chattering but stabilizes machine learning. In this thesis, theoretical analysis and experimental results are discussed to verify the effectiveness of all the modified iterative learning sliding mode control scheme.
[1]台灣機械工業同業公會,“2015年1~9月台灣機械出口機種別統計分析表”,2015.
[2]L. Piegl, “On NURBS:A survey,” IEEE Computer Graphics and Applications, vol. 11, pp. 51-71, Jan. 1991.
[3]V. I. Utkin, “Sliding Mode Control Design Principles and Applications to Electric Drives,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 23-36, Feb. 1993.
[4]V. I. Utkin, “Survey paper variable structure systems with sliding modes,” IEEE Trans. Automat. Control, vol. 22, no. 2, pp. 212-222, Apr. 1977.
[5]X. Yu and O. Kaynak, “Sliding-mode control with soft computing: A survey,” IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3275-3285, Jul. 2009.
[6]Y. B. Shtessel, I. A. Shkolnikov, and A. Levant “Guidance and control of missile interceptor using second-order sliding modes,” IEEE Trans. Aerosp. Electron. Syst., vol. 45, no. 1, pp. 110-124, Jal. 2009.
[7]A. Levant, “Sliding order and sliding accuracy in sliding mode control,” Int. J. Control, vol. 58, no. 6, pp. 1247-1263, Aug. 1991.
[8]J. Davila, L. Fridman, and A. Levant, “Second-order sliding-mode observer for mechanical systems,” IEEE Trans. Autom. Control, vol. 50, no. 11, pp. 1785-1789, Nov. 2005.
[9]I. Eker, “Second-order sliding mode control with experimental application,” ISA Trans., vol. 49, no. 3, pp. 394-405, Jul. 2010.
[10]J. A. Burton and A. S. I. Zinober, “Continuous approximation of variable structure control,” Int. J. Syst. Sci., vol. 17, no. 6, pp. 875-885, 1986.
[11]J. J. Slotine and S. S. Sastry, “Tracking control of nonlinear systems using sliding surfaces with application to robot manipulator,” Int. J. Control, vol. 38, no. 2, pp. 931-938, Dec. 1983.
[12]M. L. Tseng and M. S. Chen, “Chattering reduction of sliding mode control by low-pass filtering the control signal,” Asian J. Control, vol. 12, no. 3, pp. 392-398, May. 2010.
[13]S. Y. Wang, C. M. Hong, H. W. Tzeng, and C. W. Huang, “Design of a static reactive power compensator using fuzzy sliding mode control,” Int. J. Control, vol. 63, no. 2, pp. 393-413, 1996.
[14]Q. P. Ha, Q. H. Nguyen, D. C. Rye, and H. F. Durrant-Whyte, “Fuzzy sliding-mode controllers with applications,” IEEE Trans. Ind. Electron., vol. 48, no. 1, pp. 38-46, Feb. 2001.
[15]D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning control,” IEEE Control. Syst. Mag., vol. 26, no.3, pp. 96-114, Jun. 2006.
[16]K. Mainali, S. K. Panda, J. X. Xu, and T. Senjyu, “Repetitive position tracking performance enhancement of linear ultrasonic motor with sliding mode-cum-iterative learning control,” in Proc. IEEE Int. Conf. Mechatronics, 2004, Jun. 2004, pp. 352-357.
[17]呂杰修,馬達自動化繞線之無感測器式張力控制研究,碩士論文,國立成功大學電機工程學系,2014。
[18]H. Elci, R.W. Longman, Minh Phan, Je-Nan Juang, and R. Ugoletti, “Discrete frequency based learning control for precision motion control,” in Proc. IEEE Int. Conf. Systems, Man, Cybern., 1994, pp. 2767-2773.
[19]J. S. Lu, H. R. Chen, M. Y. Cheng, K. H. Su, L. W. Cheng, and M. C. Tsai, “Tension control improvement in automatic stator in-slot winding machines using iterative learning control,” in Proc. Int. Conf. on Information Science, Electronics and Electrical Engineering, Sapporo City, Hokkaido, Japen, 2014, pp. 1643-1647.
[20]R. W. Longman, “Iterative learning control and repetitive control for engineering practice,” Int. J. Control, vol. 73, no. 10, pp. 930-954, Feb. 2000.
[21]D. de Roover and O.H. Bosgra, “Synthesis of robust multivariable iterative learning controllers with application to a wafer stage motion system,” Int. J. Contr., vol. 73, no. 10, pp. 968-979, Feb. 2000.
[22]K. H. Su , M. Y. Cheng , H. R. Chen, and Y. C. Chang, “Iterative learning control-based tracking error and contour error compensations for biaxial contouring control systems,” in Proc. 5th Int. Conf. Positioning Technology, Kaohsiung, Taiwan, 2012, pp. 107-110.
[23]R. H. Brown, S. C. Schneider, and M. G. Mulligan, “Analysis of algorithms for velocity estimation from discrete position versus time data,” IEEE Trans. Ind. Electron., vol. 39, no. 1, pp. 11-19, Feb. 1992.
[24]S. M. Yang and S. J. Ke, “Performance evaluation of a velocity observer for accurate velocity estimation of servo motor drives,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 98-104, Feb. 2000.
[25]P. B. Schmidt and R. D. Lorenz, “Design principles and implementation of acceleration feedback to improve performance of DC drives,” IEEE Trans. Ind. Appl., vol. 28, no. 3, pp. 594-599, Jun. 1992.
[26]R. D. Lorenz and K. V. Patten, “High resolution velocity estimation for all digital, AC servo drives,” in Proc. Ind. Applicat. Soc. Annu. meeting, Pittsburgh, PA., USA, 1998, pp. 363-368.
[27]R. J. E. Merry, M. J. G. van de Molengraft, and M. Steinbuch “Velocity and acceleration estimation for optical incremental encoders,” Mechatronics, vol. 20, no. 1, pp. 20-26, Feb. 2010.
[28]L. X. Wang, “Design of fuzzy system using gradient descent training,” in A Course in Fuzzy Systems and Control, 4th ed. Taipei, R.O.C.: Prentice-Hall,, 2010, ch.13, pp. 168-178.
[29]E. Bryson and Jr. Y. C. Ho, “Numerical solution by a first-order gradient method,” in Applied Optimal Control Optimization, Estimation, and Control, Washington, DC: Hemisphere, 1975, pp. 19-20.
[30]E. K. P. Chong and S. H. Zak, “Gradient methods,” in An introduction to optimization, 4th ed., Hoboken, NJ.: Wiley, 2013, pp. 110-126.
[31]F. L. Lewis and V. L. Syrmos, “Numerical solution methods,” in Optimal Control, 2th ed., New York: Wiley, 1995, pp. 21-22.
[32]L. Piegl and W. Tiller, The NURBS Book, 2nd ed. New York: Springer, 1997.
[33]M. Y. Cheng, M. C. Tsai, and J. C. Kuo, “Real-time NURBS command generators for CNC servo controllers,” Robtics and Compiter-Intergrated Manufacturing, vol. 14, pp. 27-36, 1998.
[34]M. C. Tsai, M. Y. Cheng, K. F. Lin, and N. C. Tsai, “On acceleration/ deceleration before interpolation for CNC motion control,” in Proc. IEEE Int. Conf. on Mechatronics, Taipei, Taiwan, 2005, pp. 382-387.
[35]S. H. Suh, S. K. Kang, D. H. Chung, and I. Stroud, “Acceleration and Deceleration,” in Theory and Design of CNC Systems, London, UK: Springer, 2008, ch. 4, pp. 107-156.
[36]B. Yao, C. Hu, and Q. Wang, “Adaptive robust precision motion control of a high-speed industrial gantry with cogging force compensation,” IEEE Trans. Control Syst. Technol., vol. 19, no. 5, pp. 1149-1159, Sep. 2011.
[37]C. T. Johnson and R. D. Lorenz, “Experimental identification of friction and its compensation in precise, position controlled mechanisms,” IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1392-1398, Nov/Dec 1992.
[38]台灣機械工業同業公會,線型馬達驅動工具機的技術發展與應用,機械資訊,568期,2004。
[39]R. Schmulian, “Reduction of Cogging Forces in a Double Sided Tubular Linear Permanent Magnet Generator Used for Ocean Wave Energy Conversion,” M.S. thesis, Dept. Science Eng., Witwatersrand Univ., Johannesburg, South African, 2012.
[40]S. M. Hwang, J. B.Eom, Y. H. Jung, D. W. Lee, and B. S. Kang, “Various design techniques to reduce cogging torque by controlling energy variation in permanent magnet motors,” IEEE Trans. Magnetics, vol. 37, no. 4, pp. 2806-2809, Jul 2001.
[41]C. Studer, A. Keyhani, T. Sebastian, and S. K. Murthy, “Study of cogging torque in permanent magnet machines,” in Proc. IEEE 32nd Ind. Appl. Soc. (IAS) Annu. Meeting, vol. 1, New Orleans, LA, Oct. 1997, pp. 42–49.
[42]N. Bianchi and S. Bolognani, “Design techniques for reducing the cogging torque in surface-mounted PM motors,” IEEE Trans. Ind. Appl., vol. 38, no. 5, Oct. 2002.
[43]Z. Q. Zhu, Z. P. Xia, D. Howe, and P.H. Mellor, “Reduction of cogging force in slotless linear permanent magnet motors,” in Proc. Inst. Elect. Eng., vol. 144, no. 4, pp. 277-282, Jul 1997.
[44]張宇承,具適應性滑動模式干擾量補償架構之循跡精度改善,碩士論文,國立成功大學電機工程學系,2012。
[45]B. Yao, C. Hu, L. Lu, and Q. Wang, “Adaptive robust precision motion control of a high-speed industrial gantry with cogging force Compensations,” IEEE Trans. Control Syst. Technol., vol. 19, no. 5, pp. 1149-1159, Aug. 2011.
[46]顏木田、賴逸鵬及張良舜,“線性馬達驅動之線切割放電加工機研究(2/2)”,行政院國家科學委員會,台北,台灣,計畫編號:NSC94-2212-E-211-001,2006。
[47]楊政瑜及蘇琨祥,無刷電動機結構設計與特性研究,工程科技與教育期刊,第五卷,第三期,pp. 425-445,2008年九月。
[48]陳泓睿,參數式曲線之輪廓誤差估測研究,碩士論文,國立成功大學電機工程學系,2014。
[49]徐偉誠,應用重複學習控制器於踩踏系統之轉速漣波抑制,碩士論文,國立成功大學機械工程學系,2014。
[50]鄭銘揚,Itroduction to Motion Control System,成大電機系課程講義,2015。
[51]劉叡明,伺服馬達低轉速控制改善之研究,碩士論文,國立成功大學電機工程學系,2008。
[52]F. C. Lin and S. M. Yang, “Adaptive fuzzy logic-based velocity observer for servo motor drives,” Mechatronics, vol. 13, no. 3, pp. 229-241, Apr. 2003.
[53]J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: a survey,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 2-22, 1993.
[54]楊憲東,非線性控制,上課教材,國立成功大學航空太空研究所,2011 九月。
[55]S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, “Continuous finite-time control for robotic manipulators with terminal sliding mode,” Automat., vol. 41, no. 11, pp. 1957-1964, Nov. 2005.
[56]M. Norrlof and S. Gunnarsson, “Time and frequency domain convergence properties in iterative learning control,” Int. J. Control., vol. 75, no. 14, pp. 1114-1126, 2002.
[57]M. S. Tsai, M. T. Lin, and H. T. Yau, ”Development of command-based iterative learning control algorithm with consideration of friction, disturbance, and noise effect,” IEEE Trans. Control Syst. Technol., vol. 14, no. 3, pp. 511-518, May 2006.
[58]B. Sencer, Y. Altintas, and E. Croft, “Modeling and control of contouring errors for five-axis machine tools─PartⅠ: Modeling,” J. Manuf. Sci. Eng., vol. 131, no. 3, pp. 1-8, Jun. 2009.
[59]B. Sencer, Y. Altintas, and E. Croft, “Modeling and control of contouring errors for five-axis machine tools─PartⅡ: Precision contour controller design,” J. Manuf. Sci. Eng., vol. 131, no. 3, pp. 1-10, Jun. 2009.
[60]L. X. Wang, “Fuzzy control of nonlinear systems Ⅰ:Sliding control,” in A Course in Fuzzy Systems and Control, 4th ed. Taipei, R.O.C.: Prentice-Hall,, 2010, ch.19, pp. 238-247.
[61]R. Palm, “Sliding mode fuzzy control,” in Proc. IEEE Int. Conf. Fuzzy Syst., 1992, pp. 519-526.
[62]M. R. Soltanpour and M. M. Fateh, “Sliding mode robust control of robot manipulator in the task space by support of feedback linearization and backstepping control,” World Appl. Sci. J., vol. 6, no. 1, pp. 70-76, 2009.
[63]吳緯崚,永磁同步馬達伺服控制迴路之設計與實現,碩士論文,國立成功大學電機工程學系,2015。
[64]工研院,IMP-2硬體使用手冊,2010。
[65]吳仁哲,伺服控制系統之摩擦力與干擾補償研究,碩士論文,國立成功大學電機工程學系,2009。