簡易檢索 / 詳目顯示

研究生: 陳威呈
Chen, Wei-Cheng
論文名稱: 單級三相連續導通模式風能電力轉換器
Single-Stage Three-Phase CCM Wind-Power Converter
指導教授: 林瑞禮
Lin, Ray-Lee
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 188
中文關鍵詞: 單級三相連續導通模式風能風力發電機平均電流模式控制減法器最大功率追蹤功率因數修正
外文關鍵詞: single-stage, three-phase, continuous-conduction-mode (CCM), wind-power, wind turbine generator (WTG), average-current-mode control (ACMC), subtracting amplifier, maximum-power-point-tracking (MPPT), power-factor-correction (PFC)
相關次數: 點閱:133下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一單級三相連續導通模式風能電力轉換器。傳統風力發電轉換系統須使用兩組轉換器,以實現最大功率追蹤和功率因數修正的功能。其不僅造成電路體積過大、元件增加、成本提高、控制複雜,更導致系統整體效率下降。因此,本論文提出之電路將可同時實現最大功率追蹤與三相功率因數修正之功能,以改善上述之缺點,並且提高風力發電機的機電轉換效率。
    本論文提出電路架構和控制機制,分別採用三相功率因數修正轉換器和平均電流模式控制技術,以改善風力發電轉換器的功率因數。此外,依據風力發電機之輸出特性,利用平均電流模式控制法並搭配減法器,使風力發電機的輸出電壓、電流和功率操作在最大功率點,以達成最大功率追蹤之目的。
    本論文提出之電路將使用風力發電模擬機組做為雛型電路之交流電源,其模擬風速介於5m/s至9m/s間,最低功率為185W,最高功率則為1079W。最後,實作一單級三相連續導通模式風能電力轉換器的雛型電路,以驗證所擬研製之雛型電路同時具有最大功率追蹤與三相功率因數修正之功能。

    This thesis presents a single-stage three-phase CCM wind-power converter. In order to achieve both maximum-power-point-tracking (MPPT) and three-phase power-factor-correction (PFC) mechanisms, two stages are employed in the conventional wind energy conversion system (WECS). However, the two-stage system results in some drawbacks, including larger volume, more components, higher circuit cost, more complicated control scheme and lower system efficiency. Therefore, the proposed converter of this thesis is developed to avoid these problems and increase the electromechanical conversion efficiency of the wind turbine generator (WTG), the MPPT and three-phase PFC mechanisms are employed simultaneously.
    In the proposed circuit, a three-phase PFC converter and an average-current-mode control (ACMC) scheme are utilized to improve the power factor of the converter for the WEC. Besides, according to the characteristics of the WTG, the output voltage, current, and power of the WTG can be operated at MPP for each wind speed by using the ACMC scheme and subtracting amplifier.
    In this thesis, a wind turbine emulator (WTE) is used as the AC source for the proposed circuit with the emulated wind speed ranging from 5m/s to 9m/s. The lowest and highest powers at MPP of the WTE are 185W and 1079W, respectively. Finally, a prototype circuit of the single-stage three-phase CCM wind-power converter is built to verify the performances using MPPT and three-phase PFC mechanisms.

    CHAPTER 1. INTRODUCTION 1 1.1. Background 1 1.1.1. Wind Turbine Generator 1 1.1.2. Conventional Wind Energy Conversion Systems 3 1.2. Motivation 6 1.3. Thesis Outline 7 CHAPTER 2. THREE-PHASE PFC CONVERTER FOR WIND ENERGY CONVERSION 8 2.1. Introduction 8 2.2. Conventional Three-Phase Boost PFC Converter 8 2.3. Conventional Single-Switch Three-Phase Boost Rectifier 12 2.4. Conventional Three-Phase Boost Rectifier 13 2.5. Three-Phase PFC Converter for Wind Energy Conversion 15 2.6. Measured Characterization Curves of WTG 18 2.7. PFC Mechanism using UC3854 20 2.7.1. Control circuit of PFC mechanism using UC3854 20 2.7.2. Wye-connection three-phase voltage sensing circuit 22 2.7.3. Line-current sensing circuit 24 2.7.4. PFC mechanisms design using UC3854 30 2.7.5.Problem of three-phase PFC converter for WEC 35 2.8. Summary 38 CHAPTER 3. PROPOSED SINGLE-STAGE THREE-PHASE CCM WIND-POWER CONVERTER 39 3.1. Introduction 39 3.2. MPPT and Three-Phase PFC Mechanisms using UC3854 39 3.3. Proposed Single-Stage Three-Phase CCM Wind-Power Converter 43 3.3.1. Prototype circuit of proposed single-stage three-phase CCM wind-power converter 43 3.3.2. Design of proposed single-stage three-phase CCM wind-power converter 46 3.3.3. MPPT efficiencies between targeted and operating MPPs 52 3.4. Summary 54 CHAPTER 4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 55 4.1. Introduction 55 4.2. Implementation of Proposed Single-Stage Three-Phase CCM Wind-Power Converter 55 4.3. Experimental Results 58 4.4. Summary 77 CHAPTER 5. CONCLUSIONS AND FUTURE WORK 78 REFERENCES 80 APPENDIX A. MATHCAD® EQUATION DERIVATION 84 APPENDIX B. EXPERIMENTAL RESULTS OF DIFFERENT LOAD CONDITIONS AT WIND SPEEDS OF 9M/S, 8M/S, 7M/S, 6M/S, AND 5M/S 93 APPENDIX C. PHOTOGRAPH OF PROTOTYPE CIRCUIT FOR PROPOSED CONVERTER 186 VITA 188

    [1] M. Cirrincione, M. Pucci, and G. Vitale, “Growing neural gas (GNG) based maximum power point tracking for high performance VOC-FOC based wind generator system with induction machine,” IEEE Trans. Ind. Applicat., vol. 47, no. 2, pp. 861-872, March/April 2011.
    [2] J. G. Slootweg, S. W. H. de Haan, H. Polinder, and W. L. Kling, “General model for representing variable speed wind turbines in power system dynamics simulations,” IEEE Trans. Power Syst., vol. 18, no. 1, pp. 144-151, Feb. 2003.
    [3] D. P. Chynoweth, J. M. Owens, and R Legrand, “Renewable methane from anaerobic digestion of biomass,” Renewable Energy 22, p1-8, 2001.
    [4] S. S. Smater and A. D. Dominguez-Garcia, “A framework for reliability and performance assessment of wind energy conversion systems,” IEEE Trans. on Power Sys., vol. 26, no.4, pp. 2235-2245, Nov. 2011.
    [5] Q. Wang and L. Chang, “An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1242-1249, Sep. 2004.
    [6] M. Chunting, M. Filippa, J. Shen, and N. Natarajan, “Modeling and control of a variable-speed constant-frequency synchronous generator with brushless exciter,” IEEE Trans. Ind. Applicat., vol. 40, no. 2, pp. 565-573, March/April 2004.
    [7] A. M. De Broe, S. Drouilhet, and V. Gevorgian, “A peak power tracker for small wind turbines in battery charging applications,” IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 1630-1635, Dec. 1999.
    [8] E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 486-494, Apr. 2006.
    [9] Y. M. Chen, Y. C. Liu, S. C. Hung, and C. S. Cheng, “Multi-input inverter for grid-connected hybrid pv/wind power system,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 1070-1077, May 2007.
    [10] Y. Y. Hong, S. D. Lu, and C. S. Chiou, “MPPT for PM wind generator using gradient approximation,” Elsevier Energy Conversion and Management, vol. 50, no. 1, pp. 82-89, 2009.
    [11] S. H. Song, S. I. Kang, and N. K. Hahm, “Implementation and control of grid connected ac-dc-ac power converter for variable speed wind energy conversion system,” in Proc. IEEE APEC, vol. 1, pp. 154-158, Feb. 2003.
    [12] A. B. Raju, B.G. Fernandes, and K. Chatterjee, “A UPF power conditioner with maximum power point tracker for grid connected variable speed wind energy conversion system,” in Proc. 1st Int. Conf. Power Electron. Syst. Appl., pp. 107-112, Nov. 2004.
    [13] M. M. N. Amin and O. A. Mohammed, “DC-bus voltage control technique for parallel-integrated permanent magnet wind generation systems,” IEEE Trans. Energy Convers., vol. 26, no. 4, pp. 1140-1150, Dec. 2011.
    [14] M. Chinchilla, S. Arnaltes, and J. C. Burgos, “Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid,” IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 130-135, Mar. 2006.
    [15] M. M. Amin and O. A. Mohammed, “Development of high-performance grid connected wind energy conversion system for optimum utilization of variable speed wind turbines,” IEEE Trans. Sustain. Energy, vol. 2, no. 3, pp. 235-245, Jul. 2011.
    [16] M. Mansour, M. N. Mansouri and M. F. Mmimouni, “Study and control of a variable-speed wind-energy system sonnected to the grid,” International Journal of Renewable Energy Research, IJRER, vol. 1, no. 2, pp. 96-104, 2011.
    [17] D. Oliveira, M. Reis, C. Silva, L. Barreto, F. Antunes, and B. Soares, “A three-phase high-frequency semicontrolled rectifier for PM WECS,” IEEE Trans. Power Elec., vol. 25, no. 3, pp. 677-685, Mar. 2010.
    [18] P. W. Lee, Y. S. Lee, D. K. W. Cheng, and X. C. Liu, “Steady-state analysis of an interleaved boost converter with coupled inductors,” IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 787-795, Aug. 2000.
    [19] A. R. Prasad, P. Ziogas, and S. Manias, “An active power factor correction technique for three-phase diode rectifiers,” IEEE Trans. Power Electron., vol. 6, no. 1, pp. 83-92, Jan. 1991.
    [20] G. Spiazzi and F. C. Lee, “Implementation of single-phase boost power-factor-correction circuits in three-phase application,” IEEE Trans. on Ind. Electron., vol. 44, no. 3, pp. 365-371, Jun. 1997.
    [21] Y. Jang and M. M. Jovanovic, “A new input-voltage feed-forward harmonic-injection technique with nonlinear gain control for single-switch, three-phase, DCM boost rectifiers,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 268-277, Mar. 2000.
    [22] H. Mao, F. C. Y. Lee, and D. Boroyevich, and S. Hiti, “Review of high-performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, Aug. 1997.
    [23] R. J. Tu and C. L. Chen, “A new space-vector-modulated control for a unidirectional three-phase switch-mode rectifier,” IEEE Trans. Ind. Electron., vol. 45, no. 2, pp. 256-262, Apr. 1998.
    [24] Y. Jiang, H. Mao, F. C. Lee, and D. Borojevic, “Simple high performance three-phase boost rectifiers,” in Proc. IEEE PESC’94, vol. 2, pp. 1158-1163, Jun. 1994.
    [25] Texas Instruments, “Enhanced high power factor preregulator,” UC3854 datasheet, Jun. 1999.
    [26] LEM, “Current transducer,” LA55-P datasheet, 1998.
    [27] Philip C. Todd, “UC3854 controlled power factor correction circuit design,” U-134 Application Note, Texas Instruments, pp. 3-269–3-288.
    [28] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, Jul. 2005.
    [29] Limits for Harmonic Current Emissions (Equipment Input Current ≤16A Per Phase), IEC-61000-3-2, Apr. 2009.

    下載圖示 校內:2018-08-30公開
    校外:2018-08-30公開
    QR CODE