簡易檢索 / 詳目顯示

研究生: 林彥宇
Lin, Yen-Yu
論文名稱: 分析瀝青混凝土之裂縫生成與疲勞壽命
指導教授: 陳建旭
Chen, Jian-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 118
中文關鍵詞: 疲勞壽命裂縫生成疲勞行為疲勞裂縫
外文關鍵詞: fatigue cracking, initiation of cracking, fatigue life, fatigue behavior
相關次數: 點閱:89下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   疲勞裂縫是鋪面破壞的一種,為鋪面受到長期、反覆之載重後,由內部產生之微小破壞開始,漸漸加深、延長,而累積成為類似鱷魚皮般的龜裂,進而影響鋪面的績效。本研究之主要目的是探討瀝青混凝土之裂縫生成與疲勞壽命。採用基底瀝青為AC-20與改質瀝青的兩種不同鑽心試體,進行鬆弛試驗、控制應變率試驗及控制應變疲勞試驗,並藉由改變溫度、應變振幅、頻率及材料等參數,觀察裂縫成長的行為,以破壞演進理論分析試驗之結果,以評估疲勞裂縫與各影響因素之相互關係,並瞭解鋪面因疲勞而產生破壞的機制。

      藉由本研究結果可得知各因素對疲勞壽命之影響:溫度每升高5度,AC-20瀝青混凝土鬆弛模數中的平緩值會降低約3倍;應變率愈大,則瀝青混凝土表現出之勁度愈強;疲勞試驗所採用之應變振幅小於700μ時,瀝青混凝土試體之疲勞壽命顯著增加;溫度愈低,瀝青混凝土之疲勞壽命愈低;以較低之頻率進行疲勞試驗,瀝青混凝土試體之疲勞壽命較短;使用改質瀝青作為基底瀝青,當應變振幅在930μ內,其疲勞壽命大於AC-20瀝青混凝土,且應變振幅越小,差異性越明顯。另外,可用第一反曲點、轉換點及第二反曲點將瀝青混凝土之疲勞行為分為四個階段;在定義巨觀裂縫發生方面,使用勁度變化曲線、消散能與虛擬消散能所得之結果對於兩種瀝青混凝土而言皆有一致性;但應用在改質試體上,使用勁度變化曲線之結果與另兩種定義之結果有些微的差異。在定義疲勞壽命方面,由各項試驗結果可以看出,應用勁度變化曲線、消散能、虛擬消散能與傳統疲勞壽命等定義,對於本研究之兩種瀝青混凝土,各定義所得之疲勞壽命皆有一致性。

    none

    目錄 摘要‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧Ⅰ 目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧Ⅴ 第一章 緒論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 1- 1 1- 1 前言‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 1- 1 1- 2 研究動機‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 1- 3 1- 3 研究目的‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 1- 4 1- 4 研究範圍‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 1- 4 第二章 文獻回顧 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧2- 1 2- 1 瀝青混凝土之鬆弛模數 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧2- 1 2- 1- 1 瀝青混凝土之黏彈與鬆弛性質‧‧‧‧‧‧‧‧‧2- 1 2- 1- 2 鬆弛模數與潛變柔度之相互轉換關係‧‧‧‧‧‧2- 2 2- 2 不同理論基礎之裂縫成長行為與試驗方法‧‧‧‧‧‧ 2- 7 2- 2- 1傳統破裂理論 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 2- 7 2- 2- 2間接張力試驗試驗‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧2- 9 2- 2- 3動態力學分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧2-10 2- 2- 4應變率單軸拉伸試驗‧‧‧‧‧‧‧‧‧‧‧‧‧‧2-17 2- 2- 5破裂能門檻值觀念‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧2-18 2- 3 瀝青材料、頻率、載重、溫度因子與疲勞裂縫之相關性‧2-19 2- 3- 1高分子改質瀝青基本性質‧‧‧‧‧‧‧‧‧‧‧‧2-19 2- 3- 2溫度對瀝青混凝土疲勞行為之影響‧‧‧‧‧‧‧‧2-19 2- 3- 3載重對瀝青混凝土疲勞行為之影響‧‧‧‧‧‧‧‧2-20 2- 3- 4加載頻率對瀝青混凝土疲勞行為之影響‧‧‧‧‧‧2-20 2- 4 瀝青混凝土之疲勞裂縫成長模式‧‧‧‧‧‧‧‧‧‧‧2-21 2- 4- 1疲勞裂縫起始點與疲勞壽命定義點‧‧‧‧‧‧‧‧2-20 2- 4- 2瀝青混凝土之連續體黏彈性破壞理論‧‧‧‧‧‧‧2-24 第三章 研究計畫 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 3- 1 3- 1研究方法 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧3- 2 3- 2研究流程 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧3- 4 3- 3試驗材料 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧3- 5 3- 4試驗設備與步驟 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧3- 7 3- 4- 1試驗儀器 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧3- 7 3- 4- 1試驗步驟 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧3- 8 第四章 試驗結果與討論 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 4- 1 4- 1鬆弛模數 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧4- 1 4- 1- 1鬆弛模數試驗 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧4- 1 4- 1- 2溫度對鬆弛模數的影響 ‧‧‧‧‧‧‧‧‧‧‧‧‧4- 2 4- 1- 3瀝青種類對鬆弛模數的影響 ‧‧‧‧‧‧‧‧‧‧‧4- 4 4- 2控制應變率試驗 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧4- 6 4- 2- 1載重之應變率對應力-應變關係之影響 ‧‧‧‧‧‧4- 6 4- 2- 2虛擬應變於控制應變率試驗方面之應用 ‧‧‧‧‧‧4- 7 4- 3應變振幅、溫度、瀝青種類及載重頻率對瀝青混凝土 之疲勞壽命的影響 ‧‧‧‧‧‧‧‧‧‧4-10 4- 3- 1不同應變振幅對疲勞壽受命之影響 ‧‧‧‧‧‧‧‧4-10 4- 3- 2不同溫度對疲勞壽命之影響 ‧‧‧‧‧‧‧‧‧‧‧4-11 4- 3- 3載重頻率對瀝青混凝土之影響 ‧‧‧‧‧‧‧‧‧‧4-12 4- 3- 4改質瀝青對疲勞壽命之影響 ‧‧‧‧‧‧‧‧‧‧‧4-13 4- 4瀝青混凝土之疲勞行為 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧4-16 4- 4- 1控制應變疲勞試驗下瀝青混凝土之疲勞行為 ‧‧‧4-16 4- 4- 2瀝青混凝土之消散能 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧4-21 4- 4- 3疲勞起始點與疲勞壽命定義之討論 ‧‧‧‧‧‧‧‧4-25 第五章 結論與建議‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧5- 1 5- 1結論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧5- 1 5- 2建議‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧5- 3 參考文獻‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧參- 1 附錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧附- 1

    林志憲,「應用解析方法評估瀝青混凝土之力學機制」,博士論文,
    國立成功大學土木工程研 究所,台南,2003。

    廖敏志,「SBS改質瀝青質流性質對瀝青鋪面績效之影響」,碩士論文,
    國立成功大學土木工程研究所,台南,2000。

    蔡攀鰲,瀝青混凝土,三民書局,1984。

    Bazin, P., and J.B. Saunier, “Deformability Fatigue and Healing Properties of
    Asphalt Mixes,” Proc. Second International Conference on the Structure
    Design of Asphalt Pavements, University of Michigan, pp 553-568, 1967

    Christensen, R.M., Theory of Viscoelastisity, Academic, New York, 1982.

    Denby, E.F., “A Multidata Method of Approximate Laplace Transform Inversion,”
    Reologica Acta, Vol. 14, pp.591-593, 1975

    Ferry, J.D., Viscoelastic Properties of Polymers, Wiley, New York, 1980.

    Ghuzlan, K.A., S.H. Carpenter, “Energy-Derived, Damage-Based Failure Criterion
    for Fatigue Test,” Transportation Research Record 1723, pp. 141-149,2000.

    Kim, Y. R., H. J. Lee, and D. N. Little, “Fatigue Characterization of Asphalt
    Concrete Using Viscoelasticity and Continuum Damage Theory,” Journal of the
    Association of Asphalt Paving Technologists, Vol. 66, pp.520-569, 1997.

    Kim, Y.R., D. N. Little, and R. L. Lytton, “Use of Dynamic Mechanical Analysis
    (DMA)to Evaluate the Fatigue and Healing Potential of Asphalt Binders in Sand
    Asphalt Mixtures,” Journal of Association of Asphalt paving
    Technologists,Vol. 71, pp.176-206, 2002.

    Kim, Y.R., D. N. Little, and R. L. Lytton, “Fatigue and Healing Characterization
    of Asphalt Mixtures,”Materials in Civil Engineering, Vol.15, No.1, February
    1, pp.75-83, 2003.

    Kim, Y.R., S.L. Whitemoyer , and D.N. Little, “Healing in Asphalt Concrete
    Pavement: Is it Real?” Transportation Research Record 1454, pp. 89-97,1994.

    Leaderman, H., “Viscoelasticity Phenomena in Amorphous High Polymeric Systems,”
    Rheology, Vol. Ⅱ, Academic, New York, 1958.

    Majidzadeh, K., E. M. Kaufmann, and D. V. Ramsamooj, “Application of Fracture
    Mechanics in the Analysis of PavementFatigue,” Proceeding of the Association
    of Asphalt Paving Technologists, Vol. 40, pp.227-246, 1971.

    Monismith, C. L., J. A. Deacon, “Fatigue of Asphalt Paving Mixtures,”
    Transportation Engineering Journal, Proceeding of the American Society of
    Civil Engineering, Vol. 95, No. TE2, 1969

    Monismith, C. L., J. A. Epps, and F. N. Finn, “Improved Asphalt Mix Design,”
    Proceeding of the Association of Asphalt Paving Technologists, Vol. 55,
    pp.347-406, 1985.

    Morris, Jack, Hass, Ralph, C.G., P., Reilly, and T., Hignell, ”Pavement
    Deformation in Asphalt Pavement Can Be Predicted,” Proceeding of the
    Association of Asphalt Paving Technologists,Vol. 43, 1974.

    Park, S. W., Y. R. Kim, and R. A. Schapery, “A Viscoelastic Continuum Damage
    Model and Its Application to Uniaxial Behavior of Asphalt Concrete,”
    Mechanics of Materials, Vol. 24, pp.241-255, 1996.

    Pell, P.S., ”Fatigue of Asphalt Pavement Mixes,” Proceeding, Second
    International Conference on the Structure Design of Asphalt Pavement, pp
    459-583, Ann Arbor, Michigan, 1967.

    Pell, P.S., I.F., Taylor, ”Asphaltic Road Materials in Fatigue,” Proceeding of
    the Association of Asphalt Paving Technologists, Vol. 38, pp 577-593, 1969.

    Pronk, A.C., “Comparison of 2 and 4Point Fatigue Test and Healing in 4 Point
    Dynamic Bending Test Based on the Dissipated Energy Concept,” Proceeding of
    Eight International Conference of Asphalt Pavements, Seattle, Wash., pp
    987-994, 1997.

    Raithby, K.D., A.B., Sterling,”Some Affect of Loading History on The Performance
    of Rolled Asphalt,” TRRL-LR 496, Crowthorne, English, 1972.

    Rowe, G.M., “Performance of Asphalt Mixture in Trapezoidal Fatigue Test,”
    Proceeding of the Association of Asphalt Paving Technologists, Vol. 62, pp
    344-384, 1993.

    Schapery, R. A., ”Correspondence Principle and a Generalized J Integral for Large
    Deformation and Fracture Analysis of Viscoelasitic Media,” International
    Journal of Fracture, Vol. 25,pp.195-223, 1984.

    Schapery, R. A., ”A Theory of Mechanical Behavior of Elastic Mediawith Growing
    Damage and Other Changes In Structure,” Journal of the Mechanics and Physics
    of Solids, Vol. 38, No. 2, pp.215-253, 1990.

    Tayebali, A. A., G. Rowe, and J. Sousa, “Fatigue Response of Asphalt-Aggregate
    Mixture,” Journal of the Association of Asphalt Paving Technologists, Vol.
    61, pp.333-360, 1992.

    Van Dijk, W., “Practical Fatigue Characterization of Bituminous Mixes,”
    Proceeding of the Association of Asphalt Paving Technologists, Vol. 44, pp
    38-74, 1975.

    Van Dijk, W. and W. Vesser, “The Energy Approach to Fatigue for Pavement
    Design,” Proceeding of the Association of Asphalt Paving Technologists, Vol.
    46, pp 1-40, 1977.

    Zhang, Z., R. Rouqe, and B. Birgisson, “Evaluation of Laboratory-Measured Crack
    Growth Rate for Asphalt Mixtures,” Transportation Research Record 1767,
    pp.67-75, 2001.

    下載圖示 校內:立即公開
    校外:2004-07-09公開
    QR CODE