| 研究生: |
林彥宇 Lin, Yen-Yu |
|---|---|
| 論文名稱: |
分析瀝青混凝土之裂縫生成與疲勞壽命 |
| 指導教授: |
陳建旭
Chen, Jian-Shiuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 疲勞壽命 、裂縫生成 、疲勞行為 、疲勞裂縫 |
| 外文關鍵詞: | fatigue cracking, initiation of cracking, fatigue life, fatigue behavior |
| 相關次數: | 點閱:89 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
疲勞裂縫是鋪面破壞的一種,為鋪面受到長期、反覆之載重後,由內部產生之微小破壞開始,漸漸加深、延長,而累積成為類似鱷魚皮般的龜裂,進而影響鋪面的績效。本研究之主要目的是探討瀝青混凝土之裂縫生成與疲勞壽命。採用基底瀝青為AC-20與改質瀝青的兩種不同鑽心試體,進行鬆弛試驗、控制應變率試驗及控制應變疲勞試驗,並藉由改變溫度、應變振幅、頻率及材料等參數,觀察裂縫成長的行為,以破壞演進理論分析試驗之結果,以評估疲勞裂縫與各影響因素之相互關係,並瞭解鋪面因疲勞而產生破壞的機制。
藉由本研究結果可得知各因素對疲勞壽命之影響:溫度每升高5度,AC-20瀝青混凝土鬆弛模數中的平緩值會降低約3倍;應變率愈大,則瀝青混凝土表現出之勁度愈強;疲勞試驗所採用之應變振幅小於700μ時,瀝青混凝土試體之疲勞壽命顯著增加;溫度愈低,瀝青混凝土之疲勞壽命愈低;以較低之頻率進行疲勞試驗,瀝青混凝土試體之疲勞壽命較短;使用改質瀝青作為基底瀝青,當應變振幅在930μ內,其疲勞壽命大於AC-20瀝青混凝土,且應變振幅越小,差異性越明顯。另外,可用第一反曲點、轉換點及第二反曲點將瀝青混凝土之疲勞行為分為四個階段;在定義巨觀裂縫發生方面,使用勁度變化曲線、消散能與虛擬消散能所得之結果對於兩種瀝青混凝土而言皆有一致性;但應用在改質試體上,使用勁度變化曲線之結果與另兩種定義之結果有些微的差異。在定義疲勞壽命方面,由各項試驗結果可以看出,應用勁度變化曲線、消散能、虛擬消散能與傳統疲勞壽命等定義,對於本研究之兩種瀝青混凝土,各定義所得之疲勞壽命皆有一致性。
none
林志憲,「應用解析方法評估瀝青混凝土之力學機制」,博士論文,
國立成功大學土木工程研 究所,台南,2003。
廖敏志,「SBS改質瀝青質流性質對瀝青鋪面績效之影響」,碩士論文,
國立成功大學土木工程研究所,台南,2000。
蔡攀鰲,瀝青混凝土,三民書局,1984。
Bazin, P., and J.B. Saunier, “Deformability Fatigue and Healing Properties of
Asphalt Mixes,” Proc. Second International Conference on the Structure
Design of Asphalt Pavements, University of Michigan, pp 553-568, 1967
Christensen, R.M., Theory of Viscoelastisity, Academic, New York, 1982.
Denby, E.F., “A Multidata Method of Approximate Laplace Transform Inversion,”
Reologica Acta, Vol. 14, pp.591-593, 1975
Ferry, J.D., Viscoelastic Properties of Polymers, Wiley, New York, 1980.
Ghuzlan, K.A., S.H. Carpenter, “Energy-Derived, Damage-Based Failure Criterion
for Fatigue Test,” Transportation Research Record 1723, pp. 141-149,2000.
Kim, Y. R., H. J. Lee, and D. N. Little, “Fatigue Characterization of Asphalt
Concrete Using Viscoelasticity and Continuum Damage Theory,” Journal of the
Association of Asphalt Paving Technologists, Vol. 66, pp.520-569, 1997.
Kim, Y.R., D. N. Little, and R. L. Lytton, “Use of Dynamic Mechanical Analysis
(DMA)to Evaluate the Fatigue and Healing Potential of Asphalt Binders in Sand
Asphalt Mixtures,” Journal of Association of Asphalt paving
Technologists,Vol. 71, pp.176-206, 2002.
Kim, Y.R., D. N. Little, and R. L. Lytton, “Fatigue and Healing Characterization
of Asphalt Mixtures,”Materials in Civil Engineering, Vol.15, No.1, February
1, pp.75-83, 2003.
Kim, Y.R., S.L. Whitemoyer , and D.N. Little, “Healing in Asphalt Concrete
Pavement: Is it Real?” Transportation Research Record 1454, pp. 89-97,1994.
Leaderman, H., “Viscoelasticity Phenomena in Amorphous High Polymeric Systems,”
Rheology, Vol. Ⅱ, Academic, New York, 1958.
Majidzadeh, K., E. M. Kaufmann, and D. V. Ramsamooj, “Application of Fracture
Mechanics in the Analysis of PavementFatigue,” Proceeding of the Association
of Asphalt Paving Technologists, Vol. 40, pp.227-246, 1971.
Monismith, C. L., J. A. Deacon, “Fatigue of Asphalt Paving Mixtures,”
Transportation Engineering Journal, Proceeding of the American Society of
Civil Engineering, Vol. 95, No. TE2, 1969
Monismith, C. L., J. A. Epps, and F. N. Finn, “Improved Asphalt Mix Design,”
Proceeding of the Association of Asphalt Paving Technologists, Vol. 55,
pp.347-406, 1985.
Morris, Jack, Hass, Ralph, C.G., P., Reilly, and T., Hignell, ”Pavement
Deformation in Asphalt Pavement Can Be Predicted,” Proceeding of the
Association of Asphalt Paving Technologists,Vol. 43, 1974.
Park, S. W., Y. R. Kim, and R. A. Schapery, “A Viscoelastic Continuum Damage
Model and Its Application to Uniaxial Behavior of Asphalt Concrete,”
Mechanics of Materials, Vol. 24, pp.241-255, 1996.
Pell, P.S., ”Fatigue of Asphalt Pavement Mixes,” Proceeding, Second
International Conference on the Structure Design of Asphalt Pavement, pp
459-583, Ann Arbor, Michigan, 1967.
Pell, P.S., I.F., Taylor, ”Asphaltic Road Materials in Fatigue,” Proceeding of
the Association of Asphalt Paving Technologists, Vol. 38, pp 577-593, 1969.
Pronk, A.C., “Comparison of 2 and 4Point Fatigue Test and Healing in 4 Point
Dynamic Bending Test Based on the Dissipated Energy Concept,” Proceeding of
Eight International Conference of Asphalt Pavements, Seattle, Wash., pp
987-994, 1997.
Raithby, K.D., A.B., Sterling,”Some Affect of Loading History on The Performance
of Rolled Asphalt,” TRRL-LR 496, Crowthorne, English, 1972.
Rowe, G.M., “Performance of Asphalt Mixture in Trapezoidal Fatigue Test,”
Proceeding of the Association of Asphalt Paving Technologists, Vol. 62, pp
344-384, 1993.
Schapery, R. A., ”Correspondence Principle and a Generalized J Integral for Large
Deformation and Fracture Analysis of Viscoelasitic Media,” International
Journal of Fracture, Vol. 25,pp.195-223, 1984.
Schapery, R. A., ”A Theory of Mechanical Behavior of Elastic Mediawith Growing
Damage and Other Changes In Structure,” Journal of the Mechanics and Physics
of Solids, Vol. 38, No. 2, pp.215-253, 1990.
Tayebali, A. A., G. Rowe, and J. Sousa, “Fatigue Response of Asphalt-Aggregate
Mixture,” Journal of the Association of Asphalt Paving Technologists, Vol.
61, pp.333-360, 1992.
Van Dijk, W., “Practical Fatigue Characterization of Bituminous Mixes,”
Proceeding of the Association of Asphalt Paving Technologists, Vol. 44, pp
38-74, 1975.
Van Dijk, W. and W. Vesser, “The Energy Approach to Fatigue for Pavement
Design,” Proceeding of the Association of Asphalt Paving Technologists, Vol.
46, pp 1-40, 1977.
Zhang, Z., R. Rouqe, and B. Birgisson, “Evaluation of Laboratory-Measured Crack
Growth Rate for Asphalt Mixtures,” Transportation Research Record 1767,
pp.67-75, 2001.