簡易檢索 / 詳目顯示

研究生: 陳豪志
Chen, Hao-Zhi
論文名稱: 兆赫波反共振中空波導原理及應用
The Principle and Application of THz Anti-resonant Reflecting Hollow-core Waveguide
指導教授: 呂佳諭
Lu, Jayu
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 60
中文關鍵詞: 兆赫波反共振中空波導波導反共振共振干涉反共振光波導調變器內視鏡元件繞射極限低損耗彎曲損耗損耗中空波導兆赫波時域光譜儀耿氏振盪器耿氏二極體訊噪比折射率高度偵測
外文關鍵詞: THz, THz wave, terahertz, terahertz wave, antiresonant reflecting hollow-core waveguide, ARRHW, ARROW, antiresonant reflecting optical waveguide, modulator, endoscope, component, fabry perot, 300GHz, diffraction limit, bending loss, attenuation, tube, hollow core, TDS, terahertz time-domain spectroscopy, Gunn, Gunn diode, Gunn Oscillator, SNR, S/N ratio, Signal to Noise Ratio, refractive index, altitudes, detect
相關次數: 點閱:177下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於兆赫波擁有其它電磁頻段所沒有的特殊性質,例如可以直接辨識生物分子和高資料容量運載的能力,所以近年來許多不同層面的應用相繼被開發出來。特別是兆赫波的影像和偵測技術,以及兆赫波通訊元件之開發,都是近期兆赫波科技中最迅速發展的領域之一。由於兆赫波反共振中空波導是目前兆赫波具最低傳輸損耗和彎曲損耗的波導之ㄧ,因此最適合將它應用到兆赫波影像和兆赫波通訊領域。

    本論文首先實驗證明一種新型可機械調變之寬頻兆赫波調變器,它係基於一維反共振中空波導,該波導包含一複合式被覆層(cladding)由鋁板與壓克力板構成。透過機械控制鋁板和壓克力板距離,可以動態選擇波導中TE極化的傳輸頻帶,和線性衰減特定頻率之功率。實驗上量測到的最大可調變傳輸頻率為60GHz,約為傳輸頻寬(~116GHz)的 50%;而最大可調變功率比例為20dB。此外,該調變器亦可當作極化濾波器,將TE和TM極化兆赫波分開,其濾波之消光比(extinction ratio)可達到20dB (on-off ratio)。該多功能性整合型波導元件,係直接調變兆赫波訊號,和基於低損耗之兆赫波反共振波導,因此可以免去元件轉換和元件插入損失。

    其次,我們利用反共振中空波導實現一光纖掃描式兆赫波內視鏡影像系統,該系統包含一分光鏡、一塑膠反共振中空光纖和一結合光纖之塑膠微透鏡。該新型兆赫波內視鏡系統,不但不需要光纖偶合器,僅使用單一根光纖來傳送入射和從樣品反射回之兆赫波訊號,且亦成功解決過去基於次波長光纖的兆赫波內視鏡高彎曲損耗的問題。該系統具有有接近光學繞射極限之焦點光斑(大小為1.1mm),大於200的訊噪比(SNR),以及低波導彎曲損耗(在90゚彎曲時量到的最大反射兆赫波仍有原入射能量之2%)等優點。利用樣品和掃瞄反共振光纖間的干涉現象,我們可以得到樣品折射率分佈與高度分佈的影像,分別成功辨識樣品錠片中的微量物濃度,和矽透鏡之表面曲率。該實驗結果和理論計算相當吻合,對未來應用於活體影像掃描和遙測危險物具有不錯的潛力。

    Since terahertz (THz) wave has different properties from other electromagnetic waves, including direct molecular identification capability and high data-delivered capacity, various THz applications have been rapidly developed in recent years, such as THz imaging and sensing and devices for THz telecommunication. THz antiresonant reflecting hollow-core waveguide (THz-ARRHW) has been demonstrated with extremely low propagation loss and low bending loss and enables broadband transmission, which is suitable for THz imaging, remote sensing, and THz communication applications.

    In the thesis, we firstly experimentally demonstrated a 1D mechanically tunable frequency and intensity modulator for broadband THz waves based on antiresonant reflecting waveguidance mechanism, and the device is composed of an integrated cladding and a hollow air core. The integrated cladding contains a pair of PMMA slabs and a pair of aluminum (Al) plates outside that. By mechanically control of the spacing of PMMA slab and Al plate, it enables dynamical tuning of transmission band propagating in the THz-ARRHW and linear attenuation of THz power for a specific THz frequency. The measured maximum tunable frequency range is 60GHz which is 50% of transmitted bandwidth (~116GHz), and the measured maximum power attenuated ratio is 20dB at 176GHz. The transmission band shift phenomenon is only observed in TE polarization, but not for TM polarization. Therefore, the waveguide device is also utilized as a polarization filter with an extinction-ratio of 20dB. The multifunctional integrated waveguide device has advantages of direct THz signal modulation avoiding signals transformations and low insertion loss.

    In the second part of this thesis, we successfully demonstrated a fiber-scanning THz endoscope imaging system based on a THz-ARRHW, which is composed of a glass-made beamsplitter, a teflon hollow tube, and a micro-lens attached on the output end of tube. The novel THz endoscope not only has a single scanning tube-fiber avoiding the necessity of fiber coupler for both delivering the input THz signals to the sample and collecting the reflective THz signal from the sample to the Golay Cell detector, but also solves the highly bending loss limitation in the subwavelength fiber-based THz endoscope. The reflective imaging system has advantages including with a focus spot of 1.1mm (near the diffraction-limit), a signal-to-noise-ratio greater than 200, and low bending loss since the maximum detectable reflective THz power remains 2% at bending angle of 90 degree. Based on the interference phenomenon occurs between the scanning tube-fiber and sample, we can map out the refractive-index distributions and surface altitudes of an object, which enables us to identify the minute molecular concentrations in the sample pellet and to obtain the lens curvature. The experimental results are well consistent with the theoretical calculations. The demonstrated hollow-tube scanning THz endoscope is promising for future in-vivo biological imaging and remote sensing of explosives.

    口試合格證明 I Abstract II 摘要 IV 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 XI 第一章 簡介 1 1-1 兆赫波波導發展史 2 1-2 論文架構 4 第二章 兆赫波反共振中空波導調變器 5 2-1 兆赫波調變器簡介 5 2-1-1 兆赫波反共振中空波導傳輸原理 6 2-1-2 具有金屬層之反共振光波導回顧[58] 9 2-2 一維結構之兆赫波反共振中空波導調變器模擬結果 11 2-3 實驗配置與設計 18 2-3-1 兆赫波時域光譜儀簡介 18 2-3-2 實驗設置與步驟 20 2-4 量測結果與討論 22 2-4-1 波導材料的有效折射率 22 2-4-2 波導厚度1.42mm,TE極化入射之實驗結果 23 2-4-3 波導厚度1.42mm,TM極化入射之實驗結果 28 2-4-4 波導厚度1mm,TE極化入射之實驗結果 29 2.4.5 不同厚度金屬層對TE極化入射的傳輸頻率飄移影響 31 第三章 基於反共振波導之兆赫波內視鏡 34 3-1 內視鏡發展回顧 34 3-1-1 可見光頻段之光纖內視鏡 34 3-1-2 兆赫波頻段之光纖內視鏡 35 3-2 實驗系統與元件設計 36 3-2-1 連續波的兆赫波系統簡介 37 3-2-2 波導的彎曲損耗 38 3-3 兆赫波反共振中空波導內視鏡系統 40 3-3-1 系統裝置介紹 40 3-3-2 樣品準備 44 3-4 量測結果與討論 46 3-4-1 折射率分布偵測 46 3-4-2 物體表面高度分布偵測 48 第四章 結論及展望 53 參考文獻 55

    1.A. G. Davies, E. H. Linfield, and M. B. Johnston, "The development of terahertz sources and their applications," Physics in Medicine and Biology 47, 3679-3689 (2002).
    2.D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, "Recent advances in terahertz imaging," Applied Physics B-Lasers and Optics 68, 1085-1094 (1999).
    3.D. Dragoman, and M. Dragoman, "Terahertz fields and applications," Progress in Quantum Electronics 28, 1-66 (2004).
    4."Waveguide has been developed for terahertz waves," Photonics Spectra 39, 26-+ (2005).
    5.H. E. W. Francis A. Jenkins, "Fundamentals of Optics" (McGraw-Hill International Editions ,4th ed.,Page 234, 2001).
    6.W. L. Chan, J. Deibel, and D. M. Mittleman, "Imaging with terahertz radiation," Reports on Progress in Physics 70, 1325-1379 (2007).
    7.Y. W. Huang, T. F. Tseng, C. C. Kuo, Y. J. Hwang, and C. K. Sun, "Fiber-based swept-source terahertz radar," Optics Letters 35, 1344-1346 (2010).
    8.J. A. Harrington, R. George, P. Pedersen, and E. Mueller, "Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation," Optics Express 12, 5263-5268 (2004).
    9.T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, "Ferroelectric PVDF cladding terahertz waveguide," Journal of Lightwave Technology 23, 2469-2473 (2005).
    10.R. W. McGowan, G. Gallot, and D. Grischkowsky, "Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides," Optics Letters 24, 1431-1433 (1999).
    11.G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," Journal of the Optical Society of America B-Optical Physics 17, 851-863 (2000).
    12.Z. Jian, "Terahertz photonic crystals," (Rice University, 2006.), p. 124 p.
    13.N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Optics Letters 27, 1592-1594 (2002).
    14.N. M. Litchinitser, and E. Poliakov, "Antiresonant guiding microstructured optical fibers for sensing applications," Applied Physics B-Lasers and Optics 81, 347-351 (2005).
    15.V. Lousse, J. Shin, and S. H. Fan, "Conditions for designing single-mode air-core waveguides in three-dimensional photonic crystals," Applied Physics Letters 89, 161103 (2006).
    16.B. Wu, H. Zhang, P. Guo, Q. Wang, and S. J. Chang, "Multifunctional photonic crystal cross waveguide for terahertz waves," Journal of the Optical Society of America B-Optical Physics 27, 505-511 (2010).
    17.J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, "Terahertz air-core microstructure fiber," Applied Physics Letters 92, 064105 (2008).
    18.L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Optics Letters 31, 308-310 (2006).
    19.P. A. Belov, C. R. Simovski, P. Ikonen, M. G. Silveirinha, and Y. Hao, "Image transmission with the subwavelength resolution in microwave, terahertz, and optical frequency bands," Journal of Communications Technology and Electronics 52, 1009-1022 (2007).
    20.H. W. Chen, Y. T. Li, C. L. Pan, J. L. Kuo, J. Y. Lu, L. J. Chen, and C. K. Sun, "Investigation on spectral loss characteristics of subwavelength terahertz fibers," Optics Letters 32, 1017-1019 (2007).
    21.J. Y. Lu, C. M. Chiu, C. C. Kuo, C. Lai, H. C. Chang, Y. J. Hwang, C. L. Pan, and C. K. Sun, "Terahertz scanning imaging with a subwavelength plastic fiber," Applied Physics Letters 92, 084102 (2008).
    22.M. Martl, J. Darmo, D. Dietze, K. Unterrainer, and E. Gornik, "Terahertz waveguide emitter with subwavelength confinement," Journal of Applied Physics 107 (2010).
    23.J. Y. Lu, C. C. Kuo, C. M. Chiu, H. W. Chen, Y. J. Hwang, C. L. Pan, and C. K. Sun, "THz interferometric imaging using subwavelength plastic fiber based THz endoscopes," Optics Express 16, 2494-2501 (2008).
    24.B. W. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, "Subwavelength plastic wire terahertz time-domain spectroscopy," Applied Physics Letters 96, 051105 (2010).
    25.C. H. Lai, B. W. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, "Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding," Optics Express 18, 309-322 (2010).
    26.C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, "Low-index terahertz pipe waveguides," Optics Letters 34, 3457-3459 (2009).
    27.S. S. H. a. C. P. Yu, "Air-Core Waveguides for Terahertz Transmission," Asia Optical Fiber Communication and Optoelectronic Exhibition and Conference (AOE 2008), Shanghai, China,October 30–November 02 (2008).
    28.C. Yeh, F. Shimabukuro, and P. H. Siegel, "Low-loss terahertz ribbon waveguides," Applied Optics 44, 5937-5946 (2005).
    29.R. Mendis, "Comment on "Low-loss terahertz ribbon waveguides"," Applied Optics 47, 4231-4234 (2008).
    30.C. Yeh, F. Shimabukuro, and P. H. Siegel, "Reply to Comment on "Low-loss terahertz ribbon waveguides"," Applied Optics 47, 4253-4254 (2008).
    31.M. Walther, M. R. Freeman, and F. A. Hegmann, "Metal-wire terahertz time-domain spectroscopy," Applied Physics Letters 87, 261107 (2005).
    32.X. Y. He, "Investigation of terahertz Sommerfeld wave propagation along conical metal wire," Journal of the Optical Society of America B-Optical Physics 26, A23-A28 (2009).
    33.T. I. Jeon, J. Q. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Applied Physics Letters 86, 161904 (2005).
    34.S. W. Moon, C. M. Mann, B. J. Maddison, I. C. E. Turcu, R. Allot, S. E. Huq, and N. Lisi, "Terahertz waveguide components fabricated using a 3D x-ray microfabrication technique," Electronics Letters 32, 1794-1795 (1996).
    35.C. E. Collins, R. E. Miles, J. W. Digby, G. M. Parkhurst, R. D. Pollard, J. M. Chamberlain, D. P. Steenson, N. J. Cronin, S. R. Davies, and J. W. Bowen, "A new micro-machined millimeter-wave and terahertz snap-together rectangular waveguide technology," IEEE Microwave and Guided Wave Letters 9, 63-65 (1999).
    36.J. W. Digby, C. E. McIntosh, G. M. Parkhurst, B. M. Towlson, S. Hadjiloucas, J. W. Bowen, J. M. Chamberlain, R. D. Pollard, R. E. Miles, D. P. Steenson, L. S. Karatzas, N. J. Cronin, and S. R. Davies, "Fabrication and characterization of micromachined rectangular waveguide components for use at millimeter-wave and terahertz frequencies," IEEE Transactions on Microwave Theory and Techniques 48, 1293-1302 (2000).
    37.J. W. Bowen, S. Hadjiloucas, B. M. Towlson, L. S. Karatzas, S. T. G. Wootton, N. J. Cronin, S. R. Davies, C. E. McIntosh, J. M. Chamberlain, R. E. Miles, and R. D. Pollard, "Micromachined waveguide antennas for 1.6 THz," Electronics Letters 42, 842-843 (2006).
    38.G. Renversez, P. Boyer, and A. Sagrini, "Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling," Optics Express 14, 5682-5687 (2006).
    39.T. I. Jeon, and D. Grischkowsky, "Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines," Applied Physics Letters 85, 6092-6094 (2004).
    40.D. G. Cooke, and P. U. Jepsen, "Time-resolved THz spectroscopy in a parallel plate waveguide," Physica Status Solidi a-Applications and Materials Science 206, 997-1000 (2009).
    41.R. Mendis, V. Astley, J. B. Liu, and D. M. Mittleman, "Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity," Applied Physics Letters 95, 171113 (2009).
    42.S. H. Kim, E. S. Lee, Y. Bin Ji, and T. I. Jeon, "Improvement of THz coupling using a tapered parallel-plate waveguide," Optics Express 18, 1289-1295 (2010).
    43.C.-H. L. Yu-Chun Hsueh, Hung-Wen Chen, Yuh-jing Huang, Hung-Chung Chang, and Chi-Kuang Sun "THz Anti-Resonant Reflecting Tube Waveguide," Optical Society of America, CThQ5 (2009).
    44.Y. K. M. A. Duguay, T. L. Koch, and Loren Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures," Applied Physics Letters 49, 13-15 (1986).
    45.C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, "Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate," Optics Letters 31, 1112-1114 (2006).
    46.C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, "Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter," Optics Express 12, 2625-2630 (2004).
    47.C. Y. Chen, C. L. Pan, C. F. Hsieh, Y. F. Lin, and R. P. Pan, "Liquid-crystal-based terahertz tunable Lyot filter," Applied Physics Letters 88, 101107 (2006).
    48.H. Zhang, P. Guo, P. Chen, S. J. Chang, and J. H. Yuan, "Liquid-crystal-filled photonic crystal for terahertz switch and filter," Journal of the Optical Society of America B-Optical Physics 26, 101-106 (2009).
    49.A. Sharkawy, S. Y. Shi, D. W. Prather, and R. A. Soef, "Electro-optical switching using coupled photonic crystal waveguides," Optics Express 10, 1048-1059 (2002).
    50.L. Fekete, F. Kadlec, P. Kuzel, and H. Nemec, "Ultrafast opto-terahertz photonic crystal modulator," Optics Letters 32, 680-682 (2007).
    51.H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
    52.H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid-state terahertz phase modulator," Nature Photonics 3, 148-151 (2009).
    53.S. Y. Chiam, R. Singh, J. Q. Gu, J. G. Han, W. L. Zhang, and A. A. Bettiol, "Increased frequency shifts in high aspect ratio terahertz split ring resonators," Applied Physics Letters 94, 064102 (2009).
    54.W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, "A spatial light modulator for terahertz beams," Applied Physics Letters 94, 213511 (2009).
    55.A. Yariv, Pochi Yeh,” Photonics Optical Electronics in Modern Commumications,” Six edition, Oxford, ISBN 978-0-19-517946-0,page 160-172. (2007).
    56.N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Optics Express 12, 1540-1550 (2004).
    57.M. Cantin, C. Carignan, R. Cote, M. A. Duguay, R. Larose, P. Lebel, and F. Ouellette, "Remotely switched hollow-core antiresonant reflecting optical waveguide," Optics Letters 16, 1738-1740 (1991).
    58.U. Trutschel, M. Croningolomb, G. Fogarty, F. Lederer, and M. Abraham, "Analysis of metal-clad anti resonant reflecting optical waveguide for polarizer applications," IEEE Photonic Tech Letters 5, 336-339 (1993).
    59.J. P. Hulme, and S. S. A. An, "The application of leaky anti-resonant reflecting optical waveguides as optical sensors (L-ARROW)," Sensors and Actuators B-Chemical 138, 42-47 (2009).
    60.M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Applied Optics 22, 1099-1119 (1983).
    61.M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Applied Optics 24, 4493-4499 (1985).
    62.H. Yasuda, and I. Hosako, "Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy," Japanese Journal of Applied Physics 47, 1632-1634 (2008).
    63.W. F. Sun, X. K. Wang, and Y. Zhang, "Measurement of Refractive Index for High Reflectance Materials with Terahertz Time Domain Reflection Spectroscopy," Chinese Physics Letters 26, 114210 (2009).
    64."Endoscopy," (2010 ), http://en.wikipedia.org/wiki/Endoscopy.
    65.Y. B. Ji, E. S. Lee, S. H. Kim, J. H. Son, and T. I. Jeon, "A miniaturized fiber-coupled terahertz endoscope system," Optics Express 17, 17082-17087 (2009).
    66.F. A. Myers, J. McStay, and B. C. Taylor, "Variable-length Gunn oscillator," Electronics Letters 4, 386-387 (1968).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE