簡易檢索 / 詳目顯示

研究生: 李佩芸
Li, Pei-Yun
論文名稱: 應用於無人機之高功率密度六相永磁馬達設計與效率分析
Design and Efficiency Analysis of High Power Density Six-phase Permanent Magnet Synchronous Motor Applied to Unmanned Aerial Vehicle
指導教授: 謝旻甫
Hsieh, Min-Fu
黃柏維
Huang, Po-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 153
中文關鍵詞: 六相馬達高功率密度切換頻率鐵損
外文關鍵詞: six-phase motor, high power density,, switching frequency, core loss
相關次數: 點閱:41下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技文明的進步,全球居住人口比例持續增加,導致土地人口密度上升,地面交通壅塞的問題日益嚴重,因此人們將目光轉向空中的電動飛行載具,並發展了許多航空交通運輸工具。而電動飛機未來將應用於多個領域,然而長途飛行對電動飛機而言是一大挑戰,因此需提升電動飛機馬達的效率和功率密度,以促進電動飛機產業的發展。
    本文以高功率密度、高效率為馬達設計目標,考量馬達整體系統的性能,通過六相永磁馬達的設計,提升馬達的容錯率,增加電動飛機飛行過程的安全穩定性,並進行一步提升馬達的功率密度和效率;在材料選擇上,也考慮了功率密度、效率和製程所帶來的影響。
    在效率方面,本文考量了驅動器不同切換頻率下,電流對馬達效率的影響,以及馬達本身電感因素的設計,此外,還考慮了直流銅損、交流銅損與PWM載波電流之間的關係,綜合考量驅動器切換頻率、各項損失、效率和功率密度的平衡,以達成一高功率密度、高效率的無人機馬達。最後對馬達進行最佳化,進一步提升馬達效率和功率密度。

    With the advancement of technological civilization, the proportion of the global population living in urban areas increase, leading to higher population density and worsening ground traffic congestion. Consequently, people have turned their attention to electric flying vehicles, resulting in the development of various aerial transportation tools. Electric aircraft are expected to be applied in multiple fields in the future. However, long-distance flights pose a significant challenge for electric aircraft, necessitating improvements in the efficiency and power density of their motors to promote the development of the electric aircraft industry.
    This paper aims to design a motor with high power density and high efficiency, considering the overall performance of the motor system. By designing a six-phase permanent magnet motor, the fault tolerance of the motor is enhanced, thereby increasing the safety and stability of the electric aircraft during flight. Additionally, efforts are made to further improve the power density and efficiency of the motor. In terms of material selection, the impact of power density, efficiency, and manufacturing processes are also considered.
    Regarding efficiency, this paper examines the impact of current on motor efficiency under different switching frequencies of driver and the design of the motor inductance. Furthermore, the relationships between DC copper loss, AC copper loss, and PWM carrier current are considered. A comprehensive balance of driver switching frequency, various loss, efficiency, and power density is achieved to design a high power density, high efficiency motor for drones. Finally, the motor is optimized to further enhance its efficiency and power density.

    摘要 I Abstract II 致謝 XXVI 目錄 XXVII 表目錄 XXX 圖目錄 XXXII 符號表 XXXVI 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 六相永磁馬達 2 1.2.2 鐵損分析相關文獻 8 1.3 研究動機與目的 13 1.4 論文架構 14 第二章 六相永磁同步馬達設計 15 2.1 前言 15 2.2 六相馬達數學模型 15 2.2.1 對稱六相馬達數學模型 17 2.2.2 不對稱六相馬達數學模型 21 2.2.3 雙三相馬達數學模型 25 2.3 六相馬達繞線設計 30 2.4 小結 34 第三章 馬達設計與模擬分析 35 3.1 前言 35 3.2 轉子結構及材料選用 36 3.3 交流銅損 40 3.4 三相與六相馬達比較分析 43 3.4.1 三相與六相馬達模擬分析 43 3.4.2 六相馬達斷路容錯分析 44 3.5 開關切換頻率損耗分析 52 3.5.1 諧波因素 52 3.5.2 切頻因素 57 3.5.3 電感因素 62 3.6 小結 69 第四章 最佳化設計 70 4.1 前言 70 4.2 反應曲面法 71 4.2.1 實驗設計介紹 72 4.2.2 反應曲面創建 74 4.3 多目標基因演算法 75 4.4 最佳化結果 77 第五章 原型機製造與實驗驗證 83 5.1 原型機加工 83 5.1.1 定、轉子加工製作 83 5.1.2 定子繞線配置 84 5.2 實驗規劃與設計 86 5.3 原型機測試結果 87 5.3.1 原型機電阻電感量測 87 5.3.2 無載特性測試 88 5.3.3 加載特性測試 90 第六章 結論與未來展望 93 6.1 結論 93 6.2 建議 94 參考文獻 95 附錄 106 附錄 A、S6P線圈排列 106 附錄 B、A6P線圈排列 107 附錄 C、繞線因數計算 108 附錄 D、開路故障補償相角表(A6P) 109 附錄 E、開路故障補償相角表(D3P) 110 附錄 F、開路故障補償相角表(S6P) 111

    [1] 世界人口本月中達80億 將持續增加但速度趨緩(2022)。[Online]. [Available]:https://www.cna.com.tw/news/aopl/202211070258.aspx
    [2] 科技產業資訊室(iKnow) (2023)。國際航空監管機構規劃未來先進空中運輸的發展路徑。[Online]. [Available]:https://iknow.stpi.narl.org.tw/post/Read.aspx?PostID=20060
    [3] P. Daswani, C. J Armitage, …D. Walker, “Electric Aircraft: Flightpath of the Future of Air Travel.” Global Perspectives & Solutions
    [4] R. H. Nelson and P. C. Krause, “Induction Machine Analysis for Arbitrary Displacement Between Multiple Winding Sets,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-93, no. 3, pp. 841-848, May. 1974.
    [5] F. Locment, E. Semail, and F. Piriou, “Design and Study of a Multiphase Axial-flux Machine,’’ IEEE Transactions on Magnetics, vol. 42, no. 4, pp. 1427–1430, Apr. 2006.
    [6] F. Locment, E. Semail, and X. Kestelyn, “Vectorial Approach-based Control of a Seven-phase Axial Flux Machine Designed for Fault Operation,” IEEE Transactions on Industrial Electronics, vol. 55, no. 10, pp. 3682–3691, Oct. 2008.
    [7] Q. Chen, G. Li, W. Cao, Z. Qian, and Q. Wang, “Winding MMF and PM MMF Analysis of Axial-flux Machine with Multi-phase and Multi-layer Winding,” Energies, vol. 14, no. 16, p. 5147, Aug. 2021.
    [8] E. Levi, R. Bojoi, F. Profumo, H. Toliyat, and S. Williamson, ‘‘Multiphase Induction Motor Drives—A Technology Status Review,’’ IET Electric Power Application, vol. 1, no. 4, pp. 489–516, 2007.
    [9] K. Zhang, G.-J. Li, Z. Q. Zhu, and G. W. Jewell, ‘‘Impact of Current Harmonic Injection on Performance of Multi-phase Synchronous Reluctance Machines,’’ IEEE Transactions on Energy Conversion, vol. 36, no. 3, pp. 1649–1659, Sep. 2021.
    [10] K. B. Tawfiq, M. N. Ibrahim, E. E. El-Kholy, and P. Sergeant, ‘‘Performance Analysis of a Rewound Multiphase Synchronous Reluctance Machine,’’ IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 1, pp. 297–309, Feb. 2022.
    [11] C. Candelo-Zuluaga, J.-R. Riba, C. López-Torres, and A. Garcia, ‘‘Detection of Inter-turn Faults in Multi-phase Ferrite-PM Assisted Synchronous Reluctance Machines,’’ Energies, vol. 12, no. 14, p. 2733, Jul. 2019.
    [12] A. Abdel-Khalik, M., Daoud, S. Ahmed, A. Elserougi and A. Massoud, “Parameter Identification of Five-phase Induction Machines with Single Layer Windings,” IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5139-5154, Oct. 2014.
    [13] A. S. Abdel-Khalik, A. M. Massoud and S. Ahmed, “Application of Standard Three-Phase Stator Frames in Prime Phase Order Multiphase Machine Construction,” IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 2506-2517, April. 2019. 
    [14] K. B. Tawfiq, A. S. Abdel-Khalik, M. N. Ibrahim, A. M. EL-Refaie and P. Sergeant, “A Rewound Five-Phase Synchronous Reluctance Machine: Operating Voltage, Inductance Analysis and Comparison with Conventional Multiphase Machines,” IEEE Transactions on Industry Applications, vol. 60, no. 1, pp. 12-27, Jan.-Feb. 2024.
    [15] L. Alberti and N. Bianchi, “Theory and Design of Fractional-slot Multilayer Windings,” 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, pp. 3112-3119, 2011.
    [16] A. M. Silva, F. J. T. E. Ferreira, M. V. Cistelecan and C. H. Antunes, “Multiobjective Design Optimization of Generalized Multilayer Multiphase AC Winding,” IEEE Transactions on Energy Conversion, vol. 34, no. 4, pp. 2158-2167, Dec. 2019.
    [17] M. Y. Metwly, A. S. Abdel-Khalik, M. S. Hamad, S. Ahmed and N. A. Elmalhy, “Multiphase Stator Winding: New Perspectives, Advanced Topologies, and Futuristic Applications,” IEEE Access, vol. 10, pp. 103241-103263, 2022.
    [18] J. Wang, L. Yan and C. Gerada, “Torque Density Optimization of Six-phase Permanent Magnet Synchronous Machine,” Proceedings of 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), Chengdu, China, pp. 2140-2145, 2021. 
    [19] S. -B. Bae, H. -J. Yoon, S. -B. Jun, S. -W. Jung and S. -Y. Jung, “Winding Changeover System with Multi-Phase IPMSM for High-Torque Density and Wide Operating Region,” Proceedings of 2022 25th International Conference on Electrical Machines and Systems (ICEMS), Chiang Mai, Thailand, pp. 1-4, 2022.
    [20] H. Dhulipati, S. Mukundan, W. Li, J. Tjong and N. C. Kar, “Investigation of Phase Angle Displacements in Six-phase PMSM with Concentrated Windings for Reduced MMF Harmonics,” Proceedings of 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Korea (South), pp. 308-313, 2018.
    [21] F. Dong Tan, J. L. Vollin and S. M. Cuk, “A Practical Approach for Magnetic Core-loss Characterization,” IEEE Transactions on Power Electronics, vol. 10, no. 2, pp. 124-130, March. 1995.
    [22] Mu, M. High frequency magnetic core loss study (Order No. 3692210). Available from ProQuest Dissertations & Theses A&I; ProQuest Dissertations & Theses Global.
    [23] H. Saotome and Y. Sakaki, “Iron Loss Analysis of Mn-Zn Ferrite Cores,” IEEE Transactions on Magnetics, vol. 33, no. 1, pp. 728-734, Jan. 1997.
    [24] W. Yang et al., “Improved IGSE Core Loss Calculation Method Based on The Magnetic Density Distribution Characteristics of Large-size Cores,” Proceedings of 2023 IEEE Sustainable Power and Energy Conference (iSPEC), Chongqing, China, pp. 1-6, 2023. 
    [25] M. Bao, Y. Lin and X. Zheng, “Amorphous Long Stator Core Loss Calculation of Linear Motor Based on an Improved Calculation Model,” Proceedings of 2022 25th International Conference on Electrical Machines and Systems (ICEMS), Chiang Mai, Thailand, pp. 1-5, 2022.
    [26] C. P. Steinmetz, “On the Law of Hysteresis,” Transactions of the American Institute of Electrical Engineers, vol. IX, no. 1, pp. 1-64, Jan. 1892.
    [27] M. Albach, T. Durbaum and A. Brockmeyer, “Calculating Core Losses in Transformers for Arbitrary Magnetizing Currents a Comparison of Different Approaches,” Proceedings of PESC Record. 27th Annual IEEE Power Electronics Specialists Conference, Baveno, Italy, pp. 1463-1468 vol.2, 1996.
    [28] K. Venkatachalam, C. R. Sullivan, T. Abdallah and H. Tacca, “Accurate Prediction of Ferrite Core Loss with Nonsinusoidal Waveforms Using Only Steinmetz Parameters,” 2002 IEEE Workshop on Computers in Power Electronics, Mayaguez, PR, USA, pp. 36-41, 2002.
    [29] Jieli Li, T. Abdallah and C. R. Sullivan, “Improved Calculation of Core Loss with Nonsinusoidal Waveforms,” Proceedings of Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248), Chicago, IL, USA, pp. 2203-2210 vol.4, 2001.
    [30] Y. Miyama, M. Hazeyama, S. Hanioka, N. Watanabe, A. Daikoku and M. Inoue, “PWM Carrier Harmonic Iron Loss Reduction Technique of Permanent-Magnet Motors for Electric Vehicles,” IEEE Transactions on Industry Applications, vol. 52, no. 4, pp. 2865-2871, July-Aug. 2016. 
    [31] H. Huang and L. Chang, “Electrical Two-speed Propulsion by Motor Winding Switching and its Control Strategies for Electric Vehicles,” IEEE Transactions on Vehicular Technology, vol. 48, no. 2, pp. 607–618, Mar. 1999.
    [32] Y. Takatsuka, H. Hara, K. Yamada, A. Maemura and T. Kume, “A Wide Speed Range High Efficiency EV Drive System Using Winding Changeover Technique and SiC Devices,” Proceedings of 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), Hiroshima, Japan, pp. 1898-1903, 2014.
    [33] M. Barcaro, N. Bianchi, and F. Magnussen, “Analysis and Tests of a Dual Three-phase 12-Slot10-pole Permanent-magnet Motor,” 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, pp. 3587-3594, 2009.
    [34] L. Chang, M. Alvi, W. Lee, J. Kim and T. M. Jahns, “Efficiency Optimization of PWM-induced Power Losses in Traction Drive Systems with IPM Machines Using Wide Bandgap-based Inverters,” IEEE Transactions on Industry Applications, vol. 58, no. 5, pp. 5635-5649, Sept.-Oct. 2022.
    [35] A. T. Abdel-Wahed, M. Y. Metwly, A. Hemeida, A. S. Abdel-Khalik, M. S. Hamad and S. Ahmed, “Performance Comparison of Six-phase PM Machine with Several Winding Layouts for EV Applications,” Proceedings of 2023 IEEE Conference on Power Electronics and Renewable Energy (CPERE), Luxor, Egypt, pp. 1-7, 2023. 
    [36] A. Habib et al., “Predictive Current Control of Six-phase IM-based Nonisolated Integrated On-board Battery Charger Under Different Winding Configurations,” IEEE Transactions on Power Electronics, vol. 37, no. 7, pp. 8345-8358, July. 2022.
    [37] 蕭鈞毓,六相及雙三相繞組永磁式同步電機之分析及設計,國立台灣科技大學電機工程系碩士論文,2007。
    [38] A. M. EL-Refaie, “Fractional-slot Concentrated-windings Synchronous Permanent Magnet Machines: Opportunities and Challenges,” IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 107-121, Jan. 2010.
    [39] 許裕昇,新型推進器馬達之磁路分析與設計,國立成功大學電機工程學系碩士論文,2005。
    [40] T Motor, Antigravity MN8017. [Online]. [Available]:https://uav-en.tmotor.com/html/2021/Antigravity_0119/668.html
    [41] K. Ozer and M. Yilmaz, “Design and Analysis of a High Power Density Brushless DC Motor for a Multi-rotor Unmanned Aircraft,” Proceedings of 2021 13th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, pp. 378-382, 2021.
    [42] IPM Motor Features. [Online]. [Available]:http://www.hamaco-ind.com/motor_technology/index.html
    [43] X. Zhang, H. Yang, Y. Li, and S. Niu, “Comparative Study of Novel Dual-stator Machines Having Different Biased PM Configurations,” IEEE Transactions on Magnetics, vol. 58, no. 2, pp. 1-6, 2022. 
    [44] A. Naina, S. Paryani and S. S. N. Jani, “Comparison Between Surface-Mounted and Interior PM Motor for EV Application,” Proceedings of 2021 International Conference on Intelligent Technologies (CONIT), Hubli, India, pp. 1-6, 2021.
    [45] 蕭定承,應用於衛星姿態控制之反應輪無槽式永磁同步馬達設計,國立成功大學電機工程學系碩士論文,2019。
    [46] Stanley R. Trout, Ph.D, Using Permanent Magnets at Low Temperature, Arnold Magnetic Technologies, P.E.
    [47] N35EH的強磁鐵耐溫多少度?N35EH釹鐵硼參數介紹。[Online]. [Available]:https://www.krqcitie.com/cjwt/122.html
    [48] S. -B. Jun, J. -S. Kim, B. Son, Y. -J. Kim, S. Seo and S. -Y. Jung, “Study on the Method for Reducing AC Copper Loss of Interior Permanent Magnet Synchronous Motor,” Proceedings of 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Korea (South), pp. 289-292, 2018.
    [49] Skin effect & proximity effect. [Online]. [Available]:file:///C:/Users/user/Downloads/_BWTR2015-03.pdf
    [50] D. Barth, B. Klaus and T. Leibfried, “Litz Wire Design for Wireless Power Transfer in Electric Vehicles,” Proceedings of 2017 IEEE Wireless Power Transfer Conference (WPTC), Taipei, Taiwan, pp. 1-4, 2017. 
    [51] H. C. Born et al., “Manufacturing Process and Design Requirements of Litz Wire with Focus on Efficiency Improvement of Traction Motors,” Proceedings of 2022 12th International Electric Drives Production Conference (EDPC), Regensburg, Germany, pp. 1-7, 2022.
    [52] Encyclopedia Magnetica. Litz wire. [Online]. [Available]:https://www.e-magnetica.pl/doku.php/litz_wire
    [53] Y. Feng, Y. Liao, H. Lin and L. Yan, “Fault-tolerant Control of Six-phase Permanent-magnet Synchronous Machine Drives Under Open-phase Faults,” Proceedings of 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, pp. 1-5, 2019.
    [54] N. -T. Trinh and F. Vidal-Naquet, “Current Harmonic Suppression for Permanent Magnet Synchronous Motors,” Proceedings of 2019 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2019 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Istanbul, Turkey, pp. 161-165, 2019.
    [55] R. Pei, X. Zhang, L. Zeng and S. Li, “Studies of High-frequency Iron Core Loss for Synchronous Electric Machines Used in Electric Vehicles,” Proceedings of 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, pp. 1-4, 2017.
    [56] L. Chang, T. M. Jahns and R. Blissenbach, “Characterization and Modeling of Soft Magnetic Materials for Improved Estimation of PWM-induced Iron Loss,” IEEE Transactions on Industry Applications, vol. 56, no. 1, pp. 287-300, Jan.-Feb. 2020.
    [57] Zhao, Zhigang & Hu, Xinjian & Bi, Zili & Xu, Man & Ma, Xiwen & Zhang, Peng. (2020). “Calculation of Core Loss under Distorted Flux Density with Minor Hysteresis Loops for Laminated Steel Structure.” AIP Advances, July. 2020.
    [58] Y. Tang, S. Xie and J. Ding, “Pulsewidth Modulation of Z-source Inverters with Minimum Inductor Current Ripple,” IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 98-106, Jan. 2014.
    [59] 謝旻甫、余守龍,高效率永磁無刷馬達之設計與分析,國立成功大學系統及船舶機電工程學系。
    [60] 蔣安國、蔣安仁、丁敬哲、鍾健平,以模擬技術和統計方法建構專案排成之可靠度,管理科學研究第一屆管理與決策2005年學術研討會特刊,第119-130頁。
    [61] 二階反應曲面法-實驗設計。[Online]. [Available]:https://www.iem.yuntech.edu.tw/lab/qre/public_html/source/DOE/files/%E4%BA%8C%E9%9A%8E%E5%8F%8D%E6%87%89%E6%9B%B2%E9%9D%A2%E6%B3%95-%E5%AF%A6%E9%A9%97%E8%A8%AD%E8%A8%88.pdf
    [62] R. Li, P. Cheng, H. Lan, Y. Ren and Y. Hong, "Analytic Guided Magnetic-thermal Kriging Surrogate Model and Multi-objective Optimization of Synchronous Generator," Proceedings of IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, pp. 1-6, 2022.
    [63] 洪宗乾、蘇慧娟,最佳化基因演算的反應曲面法技術,南榮學報第十六期,民國102年。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE