| 研究生: |
高柏青 Kao, Po-Ching |
|---|---|
| 論文名稱: |
壓印微影技術應用於高效率有機發光元件 Applications of Imprint Lithography for High-Efficiency Organic Light-Emitting Devices |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 有機發光二極體 、電致發光 、白光 、可撓曲 、壓印微影技術 |
| 外文關鍵詞: | flexible, imprint lithography, white emission, OLED, Electroluminescence |
| 相關次數: | 點閱:85 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機發光二極體被認為是目前有機會作為大面積、全彩,平面化顯示器之元件,由於它具有一些優點如:製程簡易、高應答速度、高對比、輕、薄及應用便利等。因此,許多研究探討改善其元件結構之及了解其操作機制。
在本研究中,首先,我們系統化探討電洞注入材料metal-phthalocyanines (MPcs)的物理特性以及此材料在ITO/MPc/NPB/Alq3/LiF/Al 元件中對電致發光特性的影響。改變此材料膜厚在室溫下進行元件特性量測。結果顯示MPcs 之最高佔有軌域能階及最低未佔有軌域能階和此分子之中間金屬原子種類相關;元件驅動電壓因電洞注入層而降低,其驅動電壓之降低和此分子之最高佔有軌域能階相關。此結果說明在電洞注入過程中,MPc/NPB 界面能障大小(而非ITO/MPc 界面能障)
扮演主要角色。
其次, 我們描述一新型發紅光銥金屬錯合物bis(2-Naphthalen-1-yl-5-trifluoromethyl-pyridine-N,C2΄)iridium(III) acetylacetonate [(5-fnapy)2Ir(acac)] 之磷光特性以及使用此分子作為紅光摻雜物探討其OLED 元件之電致發光機制。結果發現使用結構為ITO/NPB/CBP:(5-fnapy)2Ir(acac)/BAlq3/LiF/Al 之元件,在適當調整摻雜(5-fnapy)2Ir(acac)分子濃度於CBP 主體分子下,可發出高亮度、高純度之紅光(0.65, 0.34)及白光(0.33, 0.32)。其元件白光光譜包含一支(5-fnapy)2Ir(acac)之紅光及兩支分別來自NPB 及Alq3 之藍光;在操作電壓9 V 到18 V 改變下,CIE 座標皆落於白光區域。
第三部份,本論文使用兩種圖案化技術製作大面積圖案化OLED 元件,元件結構為ITO/NPB/Alq3/LiF/Al。一種是低壓壓印微影技術;另一種是結合滾輪壓印微影及黃光微影技術(CRIP)。畫素陣列之圖案定義為交叉直線形式,ITO 陽極使用微影技術圖案化製程配合濕式化學蝕刻製程;陰極則利用金屬遮罩進行鍍膜。由於所使用基板相對硬基板,具有薄和可撓曲特性,因此可在低壓力下獲得高圖案轉移良率。結果發現其最佳壓印壓力及溫度分別為3 kg/cm2 及140 °C。其次,比較傳統壓印微影及黃光微影製程,CRIP 技術具有許多優點如:圖案均勻性佳、壓印壓力小、製程時間短、花費少及圖案深寬比高。此技術所獲得之圖案化OLED 元件和一般傳統黃光微影圖案化元件之光電特性相同。
Organic light-emitting diodes (OLEDs) are currently considered as promising candidates for large-area, full-color and flat-panel displays due to their prominent advantages such as ease in fabrication, faster switching speed, higher contrast, lighter, thinner and convenience of use in applications. A lot of effort has, therefore, been made to improve device structures and to understand their operating mechanisms.
In this research, first, we systematically investigated the physical characteristics of the various metal-phthalocyanines (MPcs) and the influence of the MPcs hole-injection layer (HIL) on the EL performance of ITO/MPc/NPB/Alq3/LiF/Al
devices. The characteristics were measured at room temperature with a thickness variation of the MPc layer. The results showed that the individual molecular orbital (HOMO and LUMO) level energies of MPcs are dependent on their central metal atoms. The turn-on voltage for the devices is lowered by inserting MPc layers. In
addition, the turn-on voltage decreases significantly with the increase of the HOMO levels of the MPc films, which demonstrates that the MPc/NPB interface instead of the ITO/MPc interface plays an important role in the hole-injection.
Second, we describe the phosphorescent characteristics of a new red-emitting iridium complex, bis(2-Naphthalen-1-yl-5-trifluoromethyl-pyridine-N,C2΄)iridium(III) acetylacetonate [(5-fnapy)2Ir(acac)], together with investigating the
electroluminescence (EL) mechanisms of organic light-emitting diodes (OLEDs) by using this complex as a red dopant. A bright red and white light emission with CIE coordinates (0.65, 0.34) and (0.33, 0.32) can be realized using the ITO/NPB/CBP:(5-fnapy)2Ir(acac)/BAlq3/LiF/Al structure with different the properly doping concentrations of (5-fnapy)2Ir(acac) in CBP host. The white-emission spectrum of this device is composed of a red band from (5-fnapy)2Ir(acac) and two blue emissions from NPB and BAlq3. The CIE coordinates were well within the white zone when applied voltage is varied from 9 V to 18 V.
Third, we fabricate large-scaled patterned organic light-emitting devices with ITO/NPB/ Alq3/LiF/Al structure on flexible polyethylene terephthalate (PET) substrates using two patterning techniques. One is a low-pressure imprinting lithography and the other is a combination of roller-type imprinting lithography and photolithography (CRIP). The patterns of the pixel array were defined in crossed-strip style with indium tin oxide (ITO) anode patterned by lithography techniques followed by wet chemical etching and cathode strips deposited using metal mask. Due to the
PET substrate is thin and flexible, it could decrease the pressure needed for high yield
pattern transfer as compared to that required with rigid substrate. The optimal imprinting pressure and temperature are 3 kg/cm2 and 140°C, respectively. On the other hand, compared with conventional imprint lithography or photolithography, the CRIP technique has the advantages of better uniformity, less force, consuming less time, lower cost, and higher aspect ratio. The performances of these devices were comparable to that of devices patterned by conventional photolithography.
[1] S. R. Forrest, Chem. Rev. (Washington, D.C.), 97, 1793 (1997).
[2] F. Li, H. Tang, J. Shinar, O. Resto, and S. Z. Weisz, Appl. Phys. Lett., 70, 2741 (1997).
[3] C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Phys. Lett., 70,1348 (1997).
[4] I. M. Chan, W. C. Cheng, and F. C. Hong, Appl. Phys. Lett., 80, 13 (2002).
[5] S. F. J. Appleyard and M. R. Willis, Opt. Mater. (Amsterdam, Neth.), 9, 120 (1998).
[6] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A.-M. Hor, and H. Aziz, Appl. Phys. Lett., 78, 2595 (2001).
[7] S. T. Lee, Z. Q. Gao, and L. S. Hung, Appl. Phys. Lett., 75, 1404 (1999).
[8] A. R. Schlatmann, D. Wilms Floet, A. Hilberer, F. Garten, P. J. M. Smulders, T. M.Klapwijk, and G. Hadziioannou, Appl. Phys. Lett., 69, 1764 (1996).
[9] H. Vestweber and W. Rieß, Synth. Met., 91, 181 (1997).
[10] J. Szuber and L. Grzadziel, Thin Solid Films, 391, 282 (2001).
[11] W.-L. Yu, Y. Cao, J. Pei, W. Huang, and A. J. Heeger, Appl. Phys. Lett., 75, 3270 (1999).
[12] S. M. Tadayyon, H. M. Grandin, K. Griffiths, P. R. Norton, H. Aziz, and Z. D.Popovic, Org. Electron., 5, 157 (2004).
[13] J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPertro, J. Salem, and J. A. Gotia, J. Appl. Phys., 79, 2745 (1996).
[14] H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, Science, 283, 1900
(1999).
[15] T. L. Anderson, G. C. Komplin, and W. J. Pietro, J. Phys. Chem., 97, 6577 (1993).
[16] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson,and S. R. Forrest, Nature (London), 395, 151 (1998).
[17] G. Cheng, F. Li, Y. Duan, J. Feng, S. Liu, S. Qiu, D. Lin, Y. Ma, and S. T. Lee,Appl. Phys. Lett., 82, 4224 (2003).
[18] F. Li, G. Cheng, Y. Zhao, J. Feng, S. Liu, M. Zhang, Y. Ma, and J. Shen, Appl.Phys. Lett., 83, 4716 (2003).
[19] T. Tsuzuki, N. Shirasawa, T. Suzuki, and S. Tokito, Adv. Mater. (Weinheim, Ger.),15, 1455 (2003).
[20] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest,Appl. Phys. Lett., 75, 4 (1999).
[21] C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, and R. C. Kwong, Appl. Phys. Lett., 78, 1622 (2001).
[22] C. Adachi, R. Kwong, and S. R. Forrest, Org. Electron., 2, 37 (2001).
[23] S. Lamansky, P. I. Djurovich, F. Abdel-Razzaq, S. Garon, D. L. Murphy, and M. E. Thompson, J. Appl. Phys., 92, 1570 (2002).
[24] S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, Appl. Phys. Lett.,83, 569 (2003).
[25] J. P. Duan, P. P. Sun, and C. H. Cheng, Adv. Mater. (Weinheim, Ger.), 15, 224 (2003).
[26] C. H. Yang, K. H. Fang, W. L. Su, S. P. Wang, S. K. Su, and I. W. Sun, J.
Organomet. Chem., 691, 2767 (2006).
[27] A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida,IEEE J. Sel. Top. Quantum Electron. 10, 107 (2004).
[28] A. N. Krasnov, Appl. Phys. Lett. 80, 3853 (2002).
[29] D. G. Lidzey, M. A. Pate, M. S. Weaver, T. A. Fisher, and D. D. C. Bradley, Synth.Met. 82, 141 (1996).
[30] S. Noach, E. Z. Faraggi, G. Cohen, Y. Avny, R. Neumann, D. Davidov, and A.
Lewis, Appl. Phys. Lett. 69, 3650 (1996).
[31] C. Kim and R. Forrest, Adv. Mater. _Weinheim, Ger., 15, 541 (2003).
[32] Y. Koide, Q. Wang, J. Cui, D. D. Benson, and T. J. Marks, J. Am. Chem. Soc. 122,11266 (2000).
[33] T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, Appl. Phys. Lett. 72,519 (1998).
[34] P. F. Tian, P. E. Burrows, and S. R. Forrest, Appl. Phys. Lett. 71, 3197 (1997).
[35] R. F. Service, Science 279, 1135 (1998).
[36] N. Suganuma, C. Adachi, T. Koyama, and Y. Taniguchi, Appl. Phys. Lett. 74,
1206 (1999).
[37] S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, and L. Zhuang, J. Vac. Sci.
Technol. B 15, 2897 (1997).
[38] W. C. Liao and S. L. C. Hsu, J. Vac. Sci. Technol. B 22, 2764 (2004).
[39] C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett. 51, 913. (1987)
[40] C. Adachi, T. Tsutsui and S. Saito, Optoelectron. Devices Technol. 6, 25. (1991)
[41] M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R.Forrest, Appl. Phys. Lett. 75, 4 (1994)
[42] L.J. Rothberg and Andrew J. Lovinger, J. Mater. Res. 11, 3174 (1996).
[43] S. A. Chen and T.C. Kuo, thesis of Tsing Hua university. (1999)
[44] M. A. Baldo, D. F. O. Brien, M. E. Thompson, and S. R. Forrest, Phys. Rev. B, 60 14422 (1999).
[45] M. A. Baldo, D. F. O. Brien, Y. You, A. Shoustikvo, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature, 395 151 (1998).
[46] M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nature, 430 750 (2000).
[47] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995) and Science, 272, 85 (1996).
[48] J. Haisma, M. Verheijen, K.van der Heuvel, and J. van der Berg, J. Vac. Sci. Technol. B, 14, 4124 (1996).
[49] A. Kumar, G.M. Whitesides, Appl Phys Lett., 63, 2002 (1993).
[50] H. Tan, A. Gilbertson, S.Y. Chou, J Vac Sci Technol. B, 16, 3926 (1999).
[51] P. Rucjjpeft, M. colburn, B. Choi, Nounu, S. Johnson, C. G. Wilson, et al, J. Vac. Sci. Technol. B, 17, 2965 (1999).
[52] N. B. Mckeown, Phthalocyanine Materials Synthesis, Structure and Function,
32–47, Cambridge University Press, New York (1998).
[53] L. Grzadziel, J. Żak, and J. Szuber, Thin Solid Films, 436, 70 (2003).
[54] W. J. Kroenke, M. E. Kenny, Inorg. Chem., 3, 696 (1964).
[55] A. N. Sidorov, Opt. Spectrosc. 40, 280 (1976).
[56] A. J. Dann, H. Hoshi, Y. Maruyama, J. Appl. Phys. 67, 1371 (1990).
[57] B. Hutchinson, B. Spencer, R. Thompson, P. Neilt, Spectrochim. Acta A 43 671 (1987).
[58] T. Kobayashi, F. Kurokawa, N. Uyeda, E. Suito, Spectrochim. Acta A 26 1305
(1970).
[59] Nile B. Mckeown, Phthalocyanine materials synthesis, structure and function, Cambridge, 1998
[60] A.C. Grimsdale, F. Cacialli, J. Gruner, X.C. Li, J. Pommerehne, H. Vestweber, W. Guss, R.F. Mahrt, H. Ba¨ssler, M. Porsch, J. Daub, Adv. Mater. 7, 551 (1995).
[61] A. J. Ikushima, T. Kanno, S. Yoshida, and A. Maeda, Thin Solid Films, 273, 35 (1996).
[62] E. A. Ough, J. M. Stillman, and K. A. M. Creber, Can. J. Chem., 71, 1898 (1993).
[63] A. Davidson, J. Chem. Phys., 77, 168 (1982).
[64] J. Bardeen, F. Salt, L. Hall, Photoconductivity Conference, Wiley, New York, p.146 (1965).
[65] J. Bardeen, F. Salt, and L. Hall, Photoconductivity Conference, p. 146 (1956).
[66] A. Wolberg and J. Manassen, J. Am. Chem. Soc., 92, 2982 (1970).
[67] D. Schlettwein and N. R. Armstrong, J. Phys. Chem., 98, 11771 (1994).
[68] D. R. Kearns and M. Calvin, J. Chem. Phys., 34, 2026 (1961).
[69] I. G. Hill, D. Milliron, J. Schwartz, and A. Kahn, Proc. SPIE, 3797, 276 (1999).
[70] M. A. Lampert, Rep. Prog. Phys., 27, 329 (1964).
[71] R. D. Gould, M. S. Rahman, J. Phys. D, 14 79 (1981).
[72] K. Wihksne, A. E. Newkirk, J. Chem. Phys., 34 2184 (1961).
[73] S. E. Harrison, K. H. Ludewig, J. Chem. Phys., 45 343 (1966).
[74] T.D. Anthopoulos, T.S. Shafai, Phys. Stat. Sol. (a), 181 569 (2000), 186 89 (2001).
[75] P.J. Reucroft, F.D. Mulins, J. Chem. Phys., 58 (1973) 2918.
[76] A. K. Jonscher, Dielectric Relaxation in Solids (Chelaea Dielectrics, London), 85 (1983)
[77] A. J. Campbell, D. D. C. Bradley, and D. G. Lidzey, J. Appl. Phys., 82, 6326 (1997).
[78] A. Hunt, J. Phys.: Condens. Matter, 3, 7831 (1991).
[79] H. Vestweber and W. Rieß, Synth. Met., 91, 181 (1997).
[80] H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, Science, 283, 1900
(1999).
[81] S. M. Tadayyon, H. M. Grandin, K. Griffiths, L. L. Coatsworth, P. R. Norton, H. Aziz, and Z. D. Popovic, Org. Electron., 5, 199 (2004).
130
[82] F. Nuesch, M. Carrara, M. Schaer, D. B. Romero, and L. Zuppiroli, Chin. Phys.Lasers, 347, 311 (2001).
[83] S. M. Tadayyon, H. M. Grandin, K. Griffiths, P. R. Norton, H. Aziz, and Z. D.Popovic, Org. Electron., 5, 157 (2004)
[84] B. Boudjema, G. Guillaud, M. Gamoudi, M. Maitrot, J. Andre, M. Martin, and J. Simon, J. Appl. Phys., 56, 2323 (1984).
[85] P. C. Kao, S. Y. Chu, Z. X. You, S. J. Liu, and C. A. Chuang, Thin Solid Films, 498 , 249 (2006).
[86] V. Buloviæ, V.B. Khalfin, G. Gu, P.E. Burrows, D.Z. Garbuzov, S.R. Forrest, Phys. Rev. B ,58 , 3730 (1998).
[87] H. Riel, W. Brutting, T. Beierlein, E. Haskal, P. Muller, and W. Rieß, Synth. Met.,111, 303 (2000).
[88] B. Masenelli, D. Berner, M. N. Bussac, F. Nüesch, and Zuppiroli, Appl. Phys. Lett., 79, 4438 (2001).
[89] Z. Bao, A. J. Lovinger, and A. Dodabalapur, Appl. Phys. Lett., 69, 3066 (1996).
[90] Z. Deng, S. T. Lee, D. P. Webb, Y. C. Chan, and W. A. Gambling, Synth. Met., 107, 107 (1999).
[91] C. H. Kim and J. Shinar, Appl. Phys. Lett., 80, 2201 (2002)
[92] B. W. D’Andrade, M. E. Thompson, and S. T. Forrest, Adv. Mater. (Weinheim, Ger.), 14, 147 (2002).
[93] J. Kido, H. Shionoya, and K. Nagai, Appl. Phys. Lett., 67, 2281 (1995).
[94] Y. Kawamura, S. Yanagida, and S. R. Forrest, J. Appl. Phys., 92, 87 (2002).
[95] A. Dodabalapur, L. J. Rothberg, and T. M. Miller, Appl. Phys. Lett., 65, 2308 (1994).
[96] D. Qin and Y. Tao, Appl. Phys. Lett., 86, 113507 (2005).
[97] F. Li, G. Cheng, Y. Zhao, J. Feng, S. Liu, M. Zhang, Y. Ma, and J. Shen, Appl.Phys. Lett., 83, 4716 (2003).
[98] K. A. King, P. J. Spellane, and R. J. Wattes, J. Am. Chem. Soc., 107, 1431 (1985).
[99] M. G. Colombo, T. C. Brunold, T. Riedener, H. U. Gudel, M. Fortsch, and H.-B. Burgi, Inorg. Chem., 33, 545 (1994).
[100] V. Bulovic, R. Deshpande, M. E. Thompson, and S. R. Forrest, Chem. Phys.
Lett.,308, 317 (1999).
[101] T. Förster, Discuss. Faraday Soc., 27, 7 (1959).
[102] S. Lamansky, P. Djurovich, D. Murphy, F. Adbel-Razzaq, H.-E. Lee, C. Adachi,P.E. Burrows, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc., 123, 4304 (2001).
[103] A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, and K. Ueno, J. Am. Chem. Soc., 125, 12971 (2003).
[104] F. M. Hwang, H. Y. Chen, P. S. Chen, C. S. Liu, Y. Chi, C. F. Shu, F. I. Wu, P. T.Chou, S. M. Peng, and G. H. Lee, Inorg. Chem., 44, 1344 (2005).
[105] J. T. Lim, C. H. Jeong, J. H. Lee, J. H. Lim, and G. Y. Yeom, Jpn. J. Appl. Phys.,Part 1, 45, 1826 (2006).
[106] J. H. Niu, W. L. Li, H. Z. Wei, M. T. Li, W. M. Su, Q. Xin, Z. Q. Zhang, and Z. Z. Hu, J. Phys. D, 38, 1136 (2005).
[107] E. G. Thianche, C. Sentein, A. Lorin, C. Denis, P. Raimond, and J. M. Nunzi, J. Appl. Phys., 83, 4236 (1998).
[108] H. Murata, C. D. Merritt, and Z. H. Kafafi, IEEE J. Sel. Top. Quantum Electron., 4, 119 (1998).
[109] N. Matsusue, S. lkame, Y. Suzuki, and H. Naito, J. Appl. Phys., 97, 123512 (2005).
[110] C. Qiu, Z. Xie, H. Chen, B. Z. Tang, M. Wong, and H. S. Kwok, IEEE J. Sel. Top. Quantum Electron., 10, 101 (2004).
[111] F. Nuesch, D. Berner, E. Tutis, M. Schaer, C. Ma, X. Wang, B. Zhang, and L. Zuppiroli, Adv. Funct. Mater., 15, 323 (2005).
[112] C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, and R. C. Kwong, Appl. Phys. Lett., 78, 1622 (2001).
[113] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B,
Microelectron. Process. Phenom., 14, 4129 (1996).
[114] W. C. Liao and S. L. C. Hsu, J. Vac. Sci. Technol., B 22, 2764 (2004).
[115] D. Khang, H. Kang, T. Kim, and H. H. Lee, Nano Lett., 4, 633 (2004).
[116] R.W. Jaszewski, H. Schift, B. Schnyder, A. Schneuwly, and P. Groning, Appl. Surf. Sci., 143, 301 (1999).
[117] M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, Microelectron. Eng., 61-62, 441 (2002).
[118] H. Tan, A. Gilbertson, and S. Y. Chou, J. Vac. Sci. Technol. B 16, 3926 (1998).
[119] X. Cheng and L. J. Guo, Microelectron. Eng. 71, 277 (2004).
[120] J.-J. Ho and C.-Y. Chen, J. Electrochem. Soc. 152, G57 (2005).