| 研究生: |
張嘉祥 Zhang, Jia-Xiang |
|---|---|
| 論文名稱: |
一種新穎加法製程與銅電鍍在LCP軟板研製CPW與應用77GHz陣列貼片天線於中遠程車用雷達頻段驗證 A Novel Additive Technique utilizing Chemical Replacement and Copper Electroplating for CPW and 77 GHz Patch Antenna on LCP Substrate for Medium and Long Range Radar Verification |
| 指導教授: |
李文熙
Lee, Wen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 厚膜印刷 、高分子液晶 、車用雷達天線 、毫米波 、共平面波導 |
| 外文關鍵詞: | The thick film printing, Liquid Crystal Polymer (LCP), Automotive radar antenna, Millimeter wave, Co-Planar Waveguide |
| 相關次數: | 點閱:94 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因應通訊需求,現今市場採用軟板基材為主;推展到較高頻段(30GHz-300 GHz)時,也就是毫米波(mmWAVE)時;軟性基板材料的技術開發將是通訊產業躍進的關鍵。LCP(Liquid Crystal Polymer) 具有著低介電常數、低損耗、低吸濕性、低熱膨脹係數的優點,適用於毫米波,但LCP表面平滑而存在附著的問題,我們將利用「加法」製程於雷達毫米波段所對應的範圍是77GHz,主要應用於雷達、通信、天文。現今傳統市場中,這些基板材料(如:鋁銅基板(MC-PCB)、玻纖鋁基板、PCB等種類)大多無法滿足輕量化以及可撓性的需求,因此目前應用上受到限制。然而,傳統製程的製作方式是將銅箔基板利用蝕刻完成的減法製程,此減法製程不只會造成大量銅金屬的浪費與和銅廢料,加上製程中會產生大量的蝕刻廢液及顯影液廢液,對於環境的傷害很大;故本論文提出加法製程的網版印刷使用LCP基板搭配CPW結構進行損耗分析,並且利用完整製程參數驗證毫米W頻段(75~110GHz)天線進行模擬分析,目的為高導電性、低粗糙度、天線特性佳等,本篇論文使用賈凡尼置換反應以及電鍍分析搭配不同添加劑、時間以及溫度,使粗糙度、導電率、特性獲得改善。本研究分為三部分,第一部分探討印刷細線寬製作以及不同添加劑對於結構影響的部分,如何去優化實驗結果達到特高頻所要求的條件,包含電阻率、粗糙度、表面特徵結構。第二部分為高頻研究探討的部分,為了搭配一種新穎化學置換加法製程以及銅電鍍,在細線寬的製作以及架構的模擬需要相輔相成,從不同的添加劑條件搭配CPW去分析特高頻的特性損耗變化。第三部分為天線特性模擬的部分,從CPW的分析當中,我們將利用此論文使用的製程得到之參數去進行模擬以及討論,並考慮未來能實現的可能性。
Liquid crystal polymer (LCP) flexible substrate is used extensively in the numerous designs for millimeter wave frequency band antenna due of its superior properties, including its low thermal expansion coefficient, low moisture absorption, low dielectric constant, and low dielectric loss. In this study, a 77 GHz millimeter-wave band antenna is designed using the LCP substrate, and the additive screen-printing process is proposed to replace the traditional subtractive method. At first, the LCP sample screen is printed on with the aluminum film and immersed in copper sulfate solution for a galvanic displacement reaction (chemical replacement reaction). Therefore, in this part, a galvanic oxidation-reduction reaction utilizing a thick-film aluminum electrode in a solution of CuSO4 could transform the porous, high-oxidation potential, thick-film Al electrode into a Cu electrode with conductivity. Second, numerous aspects need to be enhanced to enhance an antenna's high-frequency performance, including the roughness, high conductivity, and thickness of the copper deposition. As a result, the performance of the antenna was improved using a chemical replacement sample that was electroplated using a range of additives under various conditions, such as varying time and voltages.
On the other hand, the loss of the transmission line shows that the additive (Inhibitor + Accelerator+ Leveler ) is the best under different additives due to dense copper. Under the condition of high-frequency components, we must obtain good continuity, dense surface, and good conductor ability to achieve better performance in terms of loss.
[1]K. Bangash, M. M. Ali, H. Maab, and H. Ahmed, "Design of a Millimeter Wave Microstrip Patch Antenna and Its Array for 5G Applications," in 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), 2019, pp. 1-6.
[2]K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and H. Winner, "Three Decades of Driver Assistance Systems: Review and Future Perspectives," IEEE Intelligent Transportation Systems Magazine, vol. 6, no. 4, pp. 6-22, 2014.
[3]A. Dewantari, S. Y. Jeon, S. Kim, S. Kim, J. Kim, and M. H. Ka, "Comparison of array antenna designs for 77GHz radar Applications," in 2016 Progress in Electromagnetic Research Symposium (PIERS), 2016, pp. 1092-1096.
[4]S. Mandal, H. Singh, S. K. Mandal, R. Mahapatra, and A. K. Mal, "Design of a Compact Monopole On-Chip Antenna for 24 GHz Automotive Radar Application," in 2019 International Workshop on Antenna Technology (iWAT), 2019, pp. 115-117.
[5]T. Shijo, S. Obayashi, and T. Morooka, "Design and development of 77-GHz pair-slot array antenna with single-mode post-wall waveguide for automotive radar," in 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 2011, pp. 476-479.
[6]盧家瑋, "一種新穎加成法製作RFID天線之研究," 碩士, 電機工程學系, 國立成功大學, 台南市, 2021.
[7]賴儀紋, "一種新穎加法製程在LCP軟板研製24GHz陣列貼片天線於車用雷達頻段," 碩士, 電機工程學系, 國立成功大學, 台南市, 2022.
[8]D. C. Thompson, O. Tantot, H. Jallageas, G. E. Ponchak, M. M. Tentzeris, and J. Papapolymerou, "Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz," IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 4, pp. 1343-1352, 2004.
[9]C. R. Kuo, T. C. Kuo, and W. H. Lee, "A Novel Fabricating a Thick Film Cu-Ni Alloy Resistor by Screen Printing an Al Electrode and Galvanic Replacement Reaction," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 11, no. 11, pp. 1997-2002, 2021.
[10]蘇勇誌, "平整劑與加速劑在印刷電路板製程中對填孔電鍍的影響," 碩士, 工業化學與災害防治研究所, 國立雲林科技大學, 雲林縣, 2003.
[11]張玉塵, "兩種含硫醇基添加劑對電鍍銅填孔力影響之研究," 碩士, 材料科學與工程系所, 國立交通大學, 新竹市, 2008.
[12]N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, "A Practical Beginner’s Guide to Cyclic Voltammetry," Journal of Chemical Education, vol. 95, no. 2, pp. 197-206, 2018/02/13 2018.
[13]H. S. Magar, R. Y. A. Hassan, and A. Mulchandani, "Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications," (in eng), Sensors (Basel, Switzerland), vol. 21, no. 19, Oct 1 2021.
[14] D. Moldenhauer, D. C. Y. Nguyen, L. Jescheck, F. Hack, D. Fischer, and A. Schneeberger, "3D screen printing – An innovative technology for large-scale manufacturing of pharmaceutical dosage forms," International Journal of Pharmaceutics, vol. 592, p. 120096, 2021/01/05/ 2021.
[15]洪兆騏, "RFID被動式電子標籤印刷之導電油墨經濟墨量研究-以網版印刷為例," 2015.
[16]V. Golovanov, J. L. Solis, V. Lantto, and S. Leppdvuori, "Different Thick-film Methods In Printing Of One-electrode Semiconductor Gas Sensors," in Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95, 1995, vol. 2, pp. 874-877.
[17]B. Jian, J. Yuan, and Q. Liu, "Procedure to Design a Series-fed Microstrip Patch Antenna Array for 77 GHz Automotive Radar," in 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 2019, pp. 1-2.
[18]I. Slomian, I. Piekarz, K. Wincza, and S. Gruszczynski, "Microstrip Antenna Array With Series Feeding Network Designed With the Use of Slot-Coupled Three-Way Power Divider," IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 667-670, 2012.
[19]R. Bayderkhani and H. R. Hassani, "Wideband and Low Sidelobe Slot Antenna Fed by Series-Fed Printed Array," IEEE Transactions on Antennas and Propagation, vol. 58, no. 12, pp. 3898-3904, 2010.
[20]M. Ando, Y. Tsunemitsu, M. Zhang, J. Hirokawa, and S. Fujii, "Reduction of Long Line Effects in Single-Layer Slotted Waveguide Arrays With an Embedded Partially Corporate Feed," IEEE Transactions on Antennas and Propagation, vol. 58, no. 7, pp. 2275-2280, 2010.
[21]N. Nagai, E. Maekawa, and K. Ono, "New n-Way Hybrid Power Dividers," IEEE Transactions on Microwave Theory and Techniques, vol. 25, no. 12, pp. 1008-1012, 1977.
[22]L. Vogt, "Microstrip And Printed Antenna Design," 2016.
[23]陳宏霖, "60GHz單一導體帶第一高階模洩漏波陣列," 碩士, 電信工程系所, 國立交通大學, 新竹市, 2005.
[24]W. L. Stutzman and G. A. Thiele, "Antenna Theory and Design, 2nd ed.," 1998.
[25]R. Schneider and J. Wenger, "System aspects for future automotive radar," in 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282), 1999, vol. 1, pp. 293-296 vol.1.
[26]C. Yu et al., "24 GHz Horizontally Polarized Automotive Antenna Arrays With Wide Fan Beam and High Gain," IEEE Transactions on Antennas and Propagation, vol. 67, no. 2, pp. 892-904, 2019.
[27]N. Kathuria and B.-C. Seet, "24 GHz Flexible Antenna for Doppler Radar-Based Human Vital Signs Monitoring," Sensors, vol. 21, no. 11, p. 3737, 2021.
[28]D. Wu, "76-81 GHz planar antenna development and utilization for automotive radar applications," 2016.
[29]S. B. Yeap, X. Qing, and Z. N. Chen, "77-GHz Dual-Layer Transmit-Array for Automotive Radar Applications," IEEE Transactions on Antennas and Propagation, vol. 63, no. 6, pp. 2833-2837, 2015.
[30]R. C. John Coonrod, "Insertion Loss Comparisons of Common High Frequency PCB Constructions," IPC APEX EXPO
[31]R.-Y. Yang, Y.-K. Su, M.-H. Weng, C.-Y. Hung, and H.-W. Wu, "Characteristics of coplanar waveguide on lithium niobate crystals as a microwave substrate," Journal of Applied Physics, vol. 101, pp. 014101-014101, 01/02 2007.
[32]C. Hung and M. Weng, "Investigation of the Silicon Substrate With Different Substrate Resistivities for Integrated Filters With Excellent Performance," IEEE Transactions on Electron Devices, vol. 59, no. 4, pp. 1164-1171, 2012.
[33]H. Sharifi, R. Lahiji, H.-C. Lin, P. Ye, L. Katehi, and S. Mohammadi, "Characterization of Parylene-N as Flexible Substrate and Passivation Layer for Microwave and Millimeter-Wave Integrated Circuits," Advanced Packaging, IEEE Transactions on, vol. 32, pp. 84-92, 03/01 2009.
[34]Z. Gang, H. Gronqvist, J. P. Starski, and L. Johan, "Characterization of liquid crystal polymer for high frequency system-in-a-package applications," IEEE Transactions on Advanced Packaging, vol. 25, no. 4, pp. 503-508, 2002.
[35]R. S. Beeresha, A. M. Khan, and H. V. M. Reddy, "CPW to microstrip transition using different CPW ground plane structures," in 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 2016, pp. 667-671.
[36]Z. Wei and A. Pham, "Liquid crystal polymer (LCP) for microwave/millimeter wave multilayer packaging," in IEEE MTT-S International Microwave Symposium Digest, 2003, 2003, vol. 3, pp. 2273-2276 vol.3.
[37]A. D. Gianfrancesco, "Technologies for chemical analyses, microstructural and inspection investigations," ScienceDirect, Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants 2017.
[38]S. E. PhD, "Surface and Material Characterization Techniques," ScienceDirect, Surface Treatment of Materials for Adhesive Bonding (Second Edition) 2014.
[39]C.-W. LU, "Studies on a novel additive method to fabricate RFID antenna," Master, NCKU, 2021.
[40]F. Mokobi, "Light Microscope- definition, principle, types, parts, magnification," june 5 2021.
[41]K. Akhtar, S. A. Khan, S. B. Khan, and A. M. Asiri, "Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization," in Handbook of Materials Characterization, S. K. Sharma, Ed. Cham: Springer International Publishing, 2018, pp. 113-145.
[42]羅聖全, "掃瞄式電子顯微鏡 (SEM)," pp. 1-4.
[43]C.-C. Huang, "In-Situ De-embedding(ISD)," 2021.
[44]Q. Liu, A. C. F. Reniers, U. Johannsen, M. C. v. Beurden, and A. B. Smolders, "Improved Probing Reliability in Antenna-on-Chip Measurements," IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 9, pp. 1745-1749, 2018.
[45]A. C. F. Reniers, A. R. v. Dommele, A. B. Smolders, and M. H. A. J. Herben, "The Influence of the Probe Connection on mm-Wave Antenna Measurements," IEEE Transactions on Antennas and Propagation, vol. 63, no. 9, pp. 3819-3825, 2015.
[46]G. N. Phung and U. Arz, "Parasitic Probe Effects in Measurements of Coplanar Waveguides with Narrow Ground Width," in 2020 IEEE 24th Workshop on Signal and Power Integrity (SPI), 2020, pp. 1-4.
[47]G. Anjaneyulu and J. S. Varma, "Design of a corner truncated patch antenna array with four elements for wireless applications," in 2019 International Conference on Intelligent Sustainable Systems (ICISS), 2019, pp. 507-510.
[48]柯柏瑋, "小型化寬頻帶印刷槽孔天線," 碩士, 電子工程系所, 國立交通大學, 新竹市, 2008.
校內:2028-08-14公開