| 研究生: |
林進富 Lin, Jin-Fu |
|---|---|
| 論文名稱: |
使用修正時間位移式相關重複取樣電路技巧之高速管路式類比數位轉換器 A High Speed Pipelined A/D Converter Using Modified Time-Shifted CDS Technique |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 數位-類比轉換器 、相關重複取樣 、管路式 、資料轉換器 |
| 外文關鍵詞: | pipeline, data converter, Analog-to-digital converter(DAC), correlated double sampling (CDS) |
| 相關次數: | 點閱:95 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著製程技術的演進,基於可靠度的考量,低電壓操作已經變成未來電路的趨勢,然而電路的供應電壓不斷的下降的同時,將會減少電路的信號動態範圍。若欲維持一定的動態範圍,必須設法抑制雜訊並降低訊號失真量,如此將間接增加類比電路的功率消耗。在傳統管路式類比數位轉換器的設計中,需要一個極高增益的運算放大器來確保訊號處理的準確性,而製程的限制將使這樣的運算放大器的設計面臨極大的困難。在這邊我們提出一個名叫修正時間位移式相關重複取樣的電路技巧來克服需要高增益運算放大器所帶來的種種實現上的困難。我們使用台積電0.18微米互補式金氧半製程並搭配所提出的電路技巧來設計一個10位元每秒取樣100萬次的管路式類比數位轉換器。此晶片的操作電壓為1.8伏特而其面積為2 mm2,其功率消耗為100 mW。
除了晶片設計之外,在本論文中,我們利用Simulink 工具來建立一個完整的管路式類比數位轉換器的高階系統行為模型,此模型包含許多實際電路將會存在的非理想效應,我們可利用此模型進行電路效能的預測,以減少電路的設計時間,除此之外,我們亦可利用此模型在系統層級進行電路功率消耗的最佳化。
With the advance of deep submicron technology, the low power supply will become the trend of circuit development based on the consideration of circuit reliability. However, the signal dynamic range will be decreased as the reduction of supply voltage. In order to restore the dynamic range, we must suppress the noise and signal distortion. By this way, it will indirectly increase the power consumption of analog circuits. Especially, a high-gain op-amp must be required to guarantee the required accuracy in the conventional pipelined ADC design. However, due to the process limitations, it is difficult to implement such high-gain op-amp. The penalty of additional power dissipation must be usually paid to implement this op-amp. In this thesis, a technique called as modified time-shifted CDS is proposed to relax the requirement of high-gain op-amp in the pipelined ADC design. A 10-bit 100 MS/s pipelined A/D converter has been designed and implemented with the TSMC 0.18 m CMOS 1P6M process. The power consumption of this chip is 100mW at 1.8 V, and the chip area is 2 mm2.
In addition to the chip design of pipelined ADC, a complete behavioral model including many non-idealities is constructed by Simulink tool. This model can be used to predict the performance of pipelined ADC, which can reduce the design time significantly. In addition, we can use this model to optimize power consumption of a pipelined ADC in behavior level.
[1] J. Li, “Accuracy enhancement techniques in low-voltage high-speed pipelined ADC design,” Oregan State University, Ph.D. Thesis, 2004.
[2] S. Lee and B. Song, “Digital-domain calibration of multi-step analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 27, pp. 1679-1688, Dec. 1992.
[3] A. Karanicolas and H. Lee, “A 15-b 1-Msample/s digitally self-calibrated pipeline ADC,” IEEE J. Solid-State Circuits, vol. 28, pp. 1207-1215, Dec. 1993.
[4] H. Lee, “A 12-b 600kS/s digitally self-calibrated pipelined algorithmic ADC,” IEEE J. Solid-State Circuits, vol. 9, pp. 509-515, Apr. 1994.
[5] E. Siragusa and I. Galton, “Gain error correction technique for pipelined analog-to-digital converters,” Electron. Lett., vol. 36, pp. 617-618, Mar. 2000.
[6] I. Ming and S. Lewis, “An 8-bit 80-Msample/s pipelined analog-to-digital converter with background calibration,” IEEE J. Solid-State Circuits, vol. 36, pp. 1489-1497, Oct. 2001.
[7] B. Murmann and B. Boser, “A 12-b 75MS/s pipelined ADC using open-loop residue amplifier,” ISSCC Dig. Tech. Papers, Feb. 2003, pp. 330-331.
[8] J. Li and U. Moon, “Background calibration techniques for multi-stage pipelined ADCs with digital redundancy,” IEEE Trans. Circuits Syst. II, vol. 50, pp. 531-538, Sept. 2003.
[9] K. Nagaraj, “Switched-capacitor circuits with reduced sensitivity to amplifier gain,” IEEE Trans. Circuit Syst., vol. 34, pp. 571-574, May 1987.
[10] A. Ali and K. Nagaraj, “Correction of operational amplifier gain error in pipelined A/D converter,” in Proc. IEEE Int. Symp. Circuits and Sys., vol. I, May 2001, pp. 568-571.
[11] K. Lin, A. Kemna and B. J. Hosticka, “Modular Low-Power, High-Speed CMOS Analog-to-Digital Converter for Embedded Systems,” Boston, Kluwer Academic Publishers, 2003.
[12] W. Kester, “High Speed Sampling and High Speed ADCs,” U.S.A, Analog Devices, Inc., 2000.
[13] Harry Nyquist, “Certain topics in telegraph transmission theory,” A.I.E.E. transaction, 1928.
[14] Y. R. Lin, “Performance limitations on high-resolution video-rate analog-digital interfaces,” U.C. Berkeley Ph.D. Thesis, 1990.
[15] S. H. Lewis, “Video-rate analog-to-digital conversion using pipelined architectures,” U.C. Berkeley Ph.D. Thesis, 1987.
[16] B. Razavi, “Principles of Data Conversion System Design,” New York: IEEE Press, 1995.
[17] K. Jyttenhove and M. S. J. Steyaert, “A 1.8-V 6-bit 1.3-GHz flash ADC in 0.25m CMOS,” IEEE J. of Solid-State circuits, vo1. 38, pp. 1115-1122, July 2003.
[18] P. Schottens and M. Vertregt, “A 6b 1.6 Gsample/s flash ADC in 0.18m CMOS using averaging termination,” ISSCC Dig. Tech. Papers, Feb. 2002, pp. 168-457.
[19] J. Doernberg, P. R. Gray, and D. A. Hodges, “A 10-bit 5-Msample/s CMOS two-step flash ADC,” IEEE J. of Solid-State Circuits, vol. 24, pp.241-249, Apr. 1999.
[20] B. Razavi and B. A. Wooley, “A 12-b 5-Msample/s two-step CMOS ADC,” IEEE J. of Solid-State Circuits, vol.27, pp. 1667-1678, Dec. 1992.
[21] J. P. Carreira and J. E. Franca, “A two-step flash ADC for digital CMOS technology,” 2nd Int. Conf. on Advanced A-D and D-A Conversion Tech. and their Applicat, July 1994, pp. 48-51.
[22] D. A. Johns and K. Martin, “Analog Integrated Circuit Design,” New York: Wiley, 1997.
[23] R. J. Baker, “CMOS Mixed-Signal Circuit Design,” New York: IEEE Press, 2002.
[24] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14 MS/s CMOS pipeline analog-to-digital converter,” IEEE J. of Solid-State Circuits, vol. 34, pp. 599-606, May 1999.
[25] S. Lewis, et al, “10b 20Msample/s analog-to-digital converter,” IEEE J. of Solid- State Circuits, vol. 27, pp. 351-358, Mar. 1992.
[26] D. Cline, “Noise, speed, and power trade offs in pipelined analog to digital converters,” U.C. Berkeley Ph.D. Thesis, Nov. 1995.
[27] I. E. Opris, B. C. Wong, and S. W. Chin, “A pipeline A/D converter architecture with low DNL,” IEEE J. of Solid-State Circuits, vol. 35, pp. 281-285, Feb. 2000.
[28] E. G. Soenen and R. L. Geiger, “An architecture and an algorithm for fully digital correction of monolithic pipelined ADC’s,” IEEE Trans. Circuits Syst. II, vol. 42, pp.143-153, Mar. 1995.
[29] D. Chang, “Design techniques for a pipelined ADC without using a front-end sample-and-hold amplifier,” IEEE Trans. Circuits Syst. I, vol. 51, pp. 2123-2132, Nov. 2004.
[30] L. Sumanen, “Pipeline Analog-to-Digital Converters for Wideband Wireless Communications,” Helsinki University of Technology Electronic Circuit Design Laboratory Report 35, Dec. 2002.
[31] I. Mehr and L. Singer, “A 55-mW 10-bit 40-Msample/s Nyquist-rate CMOS ADC,” IEEE J. of Solid-State Circuits, vol. 35, pp. 318-325, Mar. 2000.
[32] S. H. Lewis and P. R. Gray, “A pipelined 5-Msample/s 9-bit analog-to-digital converter,” IEEE J. of Solid-State Circuits, vol. sc-22, pp. 954-961, Dec. 1987.
[33] S. H. Lewis and et al., “A 10-b 20Msample/s analog-to-digital converter,” IEEE J. of Solid-State Circuits, vol. 27, pp. 351-358, Mar. 1992.
[34] B. Min and et al., “A 69-mW 10-bit 80-Msample/s pipelined CMOS ADC,” IEEE J. of Solid-State Circuits, vol. 38, pp. 2031-2039, Dec. 2003.
[35] J. Li and U. Moon, “A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique,” IEEE J. of Solid-State Circuits, vol. 39, pp. 1468-1476, Mar. 2004.
[36] D. Miyazaki, et al., “A 10-b 30-MS/s low-power pipelined CMOS A/D converter using a pseudodifferential architecture,” IEEE J. of Solid-State Circuits, vol. 38, pp. 369-373, Feb. 2003.
[37] B. Hernes and et al., “A 1.2V 220MS/s 10b pipeline ADC implemented in 0.13 m digital CMOS,” ISSCC Dig. Tech. Papers, Feb. 2004, pp. 256-526.
[38] J. B. Park and et al., “A 10-b 150Msample/s 1.8-V 123mW CMOS A/D converter with 400-MHz input bandwidth,” IEEE J. of Solid-State Circuits, vol. 39, pp. 1335-1337, Aug. 2004.
[39] Y. Park and et al., “A 10b 100Msample/s CMOS pipelined ADC with 1.8V power supply,” ISSCC Dig. Tech. Papers, Feb. 2001, pp. 130-131, 439.
[40] W. Yang and et al., “A 3-V 340mw 14-b 75 Msample/s CMOS ADC with 85-dB SFDR at Nyquist input,” IEEE J. of Solid-State Circuits, vol. 36, pp. 1931-1936, Mar. 1992.
[41] B, Murmann and B. E. Boser, “A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification,” IEEE J. of Solid-State Circuits, vol. 38, pp. 2040-2050, Dec. 2001.
[42] S. H. Lewis, “Optimizing the stage resolution in pipelined, multistage, analog-to-digital converters for video-rate applications,” IEEE Trans. Circuits Syst. II, vol.39, pp.516-523, Aug. 1992.
[43] T. Cho, “Low-power low-voltage analog-to-digital conversion techniques using pipelined architectures,” U.C. Berkeley Ph.D. thesis, 1995.
[44] F. Medeiro, B. Perez-Verdu, and et al., “Modeling opamp-induced harmonic distortion for switched-capacitor modulator design,” in Proc. IEEE Int. Symp. Circuits and Sys., vol. 5 London, U.K., May 1994, pp. 445-448.
[45] B. Razavi, “Design of Analog CMOS Integrated Circuits,” New York: McGraw-Hill, 2001.
[46] P. Malcovati, et al., “Behavioral modeling of switched-capacitor sigma-delta modulators,” IEEE Trans. Circuits Syst. I, vol. 50, pp.352-364, Mar 2003.
[47] M. E. Waltari and K. A. I. Halonen, “Circuit Techniques for Low-Voltage and High-speed A/D Converters,” Boston MA: Kluwer Academic, 2002.
[48] H. A. Aslanzadeh, et al., ” A low power 25 MS/S 12-bit pipelined analog to digital converter for wireless applications,” IEEE Proc. of Mixed-Signal Design, Southwest Symp., Feb. 2003, pp. 38-42.
[49] D. W. Cline and P. R. Gray, “A power optimized 13-b 5 Msample/s pipelined analog-to-digital converter in 1.2 m CMOS,” IEEE J. of Solid-State Circuits, vol. 31, pp. 294-303, Mar. 1996.
[50] A. M. Abo, “Design for reliability of low-voltage, switched-capacitor circuits,” U.C. Berkeley Ph.D. Thesis, 1992.
[51] T. Cho and P. R. Gray, “A 10b 20-Msamples/s, 35 mW pipeline A/D converter,” IEEE J. Solid-Stade Circuits, vol. 30, pp. 166-172, Mar. 1995.
[52] K. Nagaraj, “Switched-capacitor circuits with reduced sensitivity to amplifier gain,” IEEE Trans. Circuits Syst., vol. 34, pp. 571-574, May 1987.
[53] M. Waltari and K. Halonen, “Timing skew insensitive switching for double sampled circuits,” in Proc. IEEE Int. Symp. Circuits and Sys., vol. II, Jun. 1999, pp. 61-64.
[54] L. Sumanen, M. Waltari, and Kari Halonen, “A mismatch insensitive CMOS dynamic comparator for pipeline A/D converters,” in Proc. ICECS, vol.I, Dec. 2000, pp. 32-35.
[55] O. Choksi and L. R. Carley, “Analysis of switched-capacitor common-mode feedback circuit,” IEEE Trans. Circuits Syst. II, vol. 50, pp.906-917, Dec. 2003.
[56] B. Min, et al., “A 69-mW 10-bit 80-MSample/s Pipelined CMOS ADC,” IEEE J. Solid-State Circuits, vol. 38, pp. 2031-2039, Dec. 2003.
[57] H. Pan, “A 3.3-V 12-b 50-MS/s A/D Converter in 0.6-m CMOS with 80-dB SFDR,” U.C. Los Angeles, Ph.D. Thesis, 1999.