簡易檢索 / 詳目顯示

研究生: 楊宗穎
Yang, Tsung-Ying
論文名稱: 固體推進劑中混摻鐵粉對脈衝式電漿推進器整體性能的影響
Effect of iron powder blending in solid propellant on the overall performance of pulsed plasma
指導教授: 李約亨
Li, Yueh-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程國際碩博士學位學程
International Master/Doctoral Degree Program on Energy Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 113
中文關鍵詞: 電力推進器脈衝式電漿推進器金屬複合聚合物PMMA混摻鐵粉效率推力功率比
外文關鍵詞: Electric propulsion, Pulsed plasma thruster, Metal-composite polymer, PMMA@Fe, Efficiency, Thrust-to-power ratio
ORCID: https://orcid.org/0009-0004-6504-9371
相關次數: 點閱:34下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脈衝電漿推進器(PPT)因其小型化、簡單性及精確推力生成能力,廣泛應用於立方衛星。然而,其低效率及推力功率比限制了更廣泛的採用。本研究提出一種新型 PMMA 金屬複合聚合物推進劑(PMMA@Fe),以摻雜鐵粉作為替代傳統 PTFE 推進劑的方案。合成並評估了鐵粉濃度範圍為 5 wt% 至 20 wt% 的 PMMA@Fe 樣品。結果顯示,鐵粉的添加降低了電漿阻抗並提高放電電流,相較於純 PMMA,其脈衝推力(impulse bit)提升了 62.5%(從 80.3 μNs 增至 131.9 μNs),推力功率比提升了 63.5%(從 17.8 μN/J 增至 29.3 μN/J)。 材料分析顯示,PMMA的燒蝕速率從純 PMMA 的 4.5 μg/shot 增至 PMMA@5 wt% Fe 的 8.1 μg/shot,並在更高濃度下趨於平穩。電漿羽流分析表明,隨著鐵含量增加,電漿生成量增幅達 50%,PMMA 分解物的光學發射強度提高了 40%。儘管性能有所提升,但高鐵含量(≥20 wt%)導致不規則放電及碳和金屬沉積,限制了推進器的使用壽命至 6000 次放電。本研究結果顯示PMMA@15 wt%Fe 為最佳配方,達到 19.6% 的推力效率及 1,426 s 的比衝,同時保持結構完整性。這些研究結果表明,PMMA@Fe 在提升 PPT 效能方面具有顯著潛力,可有效應對立方衛星應用中的效率及耐久性挑戰。

    Pulsed plasma thruster (PPT) is extensively utilized in CubeSats due to their compact size, simplicity, and precise thrust generation capabilities. However, their limited efficiency and thrust-to-power ratio constrain broader adoption. This study presents a novel PMMA-based metal-composite polymer propellant (PMMA@Fe) doped with iron powder as an alternative to conventional PTFE propellants. PMMA@Fe samples with iron powder concentrations ranging from 5 wt% to 20 wt% were synthesized and evaluated. Results show that the addition of iron powder reduced plasma impedance and increased discharge currents, leading to a 62.5% improvement in impulse bit (from 80.3 μNs to 131.9 μNs) and a 63.5% increase in the thrust-to-power ratio (from 17.8 μN/J to 29.3 μN/J) compared to pure PMMA.
    Material analysis revealed an increase in the ablation rate from 4.5 μg/shot (pure PMMA) to 8.1 μg/shot (5 wt% Fe), plateauing at higher concentrations. Plasma plume analysis indicated a 50% rise in plasma generation and a 40% enhancement in optical emission intensity with increasing iron content. Despite these performance improvements, higher iron concentrations (≥20 wt%) caused irregular discharges and carbon-metal deposition, limiting the thruster lifespan to 6,000 discharges.
    The optimal composition was identified as PMMA@15 wt%Fe, achieving 19.6% thrust efficiency and a specific impulse of 1,426 s while maintaining structural integrity. These findings demonstrate the potential of PMMA@Fe to significantly enhance PPT performance, addressing the challenges of efficiency and durability for CubeSat applications.

    摘要 I Abstract II 誌謝 IV Content VI List of tables IX List of figures X Nomenclature XIV CHAPTER 1 Introduction 1 1-1 Background 1 1-2 Propulsion systems for satellites 4 1-2-1 Chemical propulsion 5 1-2-2 Electric propulsion 6 1-3 Development of pulsed plasma thruster 11 1-4 Pulsed plasma thruster propellants 13 1-5 Motivation and Objective 14 CHAPTER 2 Theory of pulsed plasma thruster 18 2-1 Mechanism of plasma acceleration 18 2-1-1 Electromagnetic force 18 2-1-2 Electrothermal force 21 2-2 Propulsion performance parameters 23 CHAPTER 3 Materials and Methods 25 3-1 Experimental setup 25 3-1-1 PMMA@Fe preparation 25 3-1-2 Experimental apparatus 29 3-1-3 Experimental method 32 3-2 Vacuum system 34 3-3 Analysis equipment 35 3-3-1 Dielectric Property Analysis 35 3-3-2 SEM-EDS analysis 37 3-3-3 Micro-CT analysis 38 3-3-4 Faraday cup 39 3-4 Circuit design and optimization 40 3-4-1 High-voltage discharge circuit design 40 3-4-2 Optimization of inductive energy storage ignition circuit 46 3-5 Thruster design 55 CHAPTER 4 Result and discussion 57 4-1 Characterization of the PMMA@Fe 57 4-1-1 SEM-EDS analysis 57 4-1-2 Micro-CT analysis 63 4-2 Discharge characteristics of PPT with PMMA@Fe 66 4-3 Average ablation rate of the different experimental conditions (case 1~5) 71 4-4 Average impulse bit of the different experimental conditions (case 1~5) 72 4-5 Faraday cup with the different experimental conditions (case 1~5) 73 4-6 SEM-EDS analysis of PMMA@Fe after ablation 78 4-7 Optical emission spectrum 81 4-8 Thruster performance 85 CHAPTER 5 Conclusion and Future Work 89 5-1 Conclusion 89 5-2 Future work 90 Reference 92

    1.BryceTech. Smallsats by the Numbers 2024. 2024; Available from: https://brycetech.com/reports.
    2.Hwang, F.-T. Mission Design and Analysis for FORMOSAT-7 Program. in 14th International Conference on Space Operations. 2016.
    3.Adams, E., et al. Double asteroid redirection test: The earth strikes back. in 2019 IEEE Aerospace Conference. 2019. IEEE.
    4.Frisbee, R.H., Advanced space propulsion for the 21st century. Journal of propulsion and power, 2003. 19(6): p. 1129-1154.
    5.Mazouffre, S., Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sources Science and Technology, 2016. 25(3): p. 033002.
    6.Mohite, A.A.M.A., A Detailed Study and Analysis of Cold Gas Propulsion System. 2020.
    7.O’Reilly, D., G. Herdrich, and D.F. Kavanagh, Electric propulsion methods for small satellites: A review. Aerospace, 2021. 8(1): p. 22.
    8.Bock, D., et al., Electric propulsion systems for small satellites: the low earth orbit mission perseus. Progress in Propulsion Physics, 2011. 2: p. 629-638.
    9.Holste, K., et al., Ion thrusters for electric propulsion: Scientific issues developing a niche technology into a game changer. Review of Scientific Instruments, 2020. 91(6).
    10.Tummala, A.R. and A. Dutta, An overview of cube-satellite propulsion technologies and trends. Aerospace, 2017. 4(4): p. 58.
    11.Lemmer, K., Propulsion for cubesats. Acta Astronautica, 2017. 134: p. 231-243.
    12.Coletti, M., S. Ciaralli, and S.B. Gabriel, PPT development for nanosatellite applications: experimental results. IEEE Transactions on Plasma Science, 2014. 43(1): p. 218-225.
    13.Burton, R.L. and P. Turchi, Pulsed plasma thruster. Journal of Propulsion and Power, 1998. 14(5): p. 716-735.
    14.Nawaz, A., R. Albertoni, and M. Auweter-Kurtz, Thrust efficiency optimization of the pulsed plasma thruster SIMP-LEX. Acta Astronautica, 2010. 67(3-4): p. 440-448.
    15.Ciaralli, S., M. Coletti, and S. Gabriel, Results of the qualification test campaign of a Pulsed Plasma Thruster for Cubesat Propulsion (PPTCUP). Acta Astronautica, 2016. 121: p. 314-322.
    16.Inc., B.C. Bmp-200 Micro-Pulsed Plasma Thruster. 2019; Available from: https://satsearch.co/products/busek-bmp-220.
    17.Aoyagi, J., et al., Total impulse improvement of coaxial pulsed plasma thruster for small satellite. Vacuum, 2008. 83(1): p. 72-76.
    18.Edamitsu, T. and H. Tahara. Performance measurement and flowfield calculation of an electrothermal pulsed plasma thruster with a propellant feeding mechanism. in Proceedings of the 29th International Electric Propulsion Conference. 2005.
    19.Rysanek, F. and R. Burton. Effects of geometry and energy on a coaxial Teflon pulsed plasma thruster. in 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2000.
    20.Markusic, T.E., et al., Ablative Z-pinch pulsed plasma thruster. Journal of Propulsion and Power, 2005. 21(3): p. 392-400.
    21.Guman, W., Pulsed plasma technology in microthrusters. Fairchild Hiller Corp., Farmingdale, NY, AFAPL-TR-68-132, 1968.
    22.Palumbo, D.J. and W.J. Guman, Effects of propellant and electrode geometry on pulsed ablative plasma thruster performance. Journal of spacecraft and rockets, 1976. 13(3): p. 163-167.
    23.Pottinger, S.J., D. Krejci, and C.A. Scharlemann, Pulsed plasma thruster performance for miniaturised electrode configurations and low energy operation. Acta Astronautica, 2011. 68(11-12): p. 1996-2004.
    24.Hisatsune, K., et al. Use of composite propellants as for electric thrusters. in International Electric Propulsion Conference, IEPC Paper. 1999.
    25.Tahara, H., T. Edamitsu, and H. Sugihara. Performance Characteristics of Electrothermal Pulsed Plasma Thrusters with Insulator-Rod-Arranged Cavities and Teflon-Alternative Propellants. in Proceedings of the 30th International Electric Propulsion Conference (IEPC-2007-337), Florence, Italy. 2007.
    26.Glascock, M.S., J.L. Rovey, and K.A. Polzin, Impulse and performance measurements of electric solid propellant in a laboratory electrothermal ablation-fed pulsed plasma thruster. Aerospace, 2020. 7(6): p. 70.
    27.Mashidori, H., et al., A coaxial pulsed plasma thruster using chemical propellants. Vacuum, 2006. 80(11-12): p. 1229-1233.
    28.Group, I. Polymethyl Methacrylate (PMMA) Prices, Trend, Chart, Demand, Market Analysis, News, Historical and Forecast Data Report 2024 Edition. 2024; Available from: https://www.imarcgroup.com/polymethyl-methacrylate-pricing-report.
    29.Chemanalyst. Fluoropolymers (PTFE) Price Trend and Forecast. 2024; Available from: https://www.chemanalyst.com/Pricing-data/fluoropolymer-1238.
    30.KiITCO. World Spot Price for Precious Metals. 2024; Available from: https://www.kitco.com/price/precious-metals.
    31.Hou, D., et al., Effect of ceramic nozzle on performance of pulsed plasma thruster. Aerospace Science and Technology, 2008. 12(8): p. 573-578.
    32.S.-W. Liu (劉勝文), Master Thesis, The Development of Vacuum Arc Cathode Induced Pulsed Plasma Thruster. 2021.
    33.Guman, W.J., Pulsed plasma technology in microthrusters. 1968, FAIRCHILD HILLER CORP FARMINGDALE NY REPUBLIC AVIATION DIV.
    34.Junichiro Aoyagi, M.Y., Taiyo Tezuka, Rin Watanabe, Takayoshi Otsuki, and Shinji Takeya, Series Development of Coaxial Pulsed Plasma Thruster
    from 1 J to 8 J, in The 38th International Electric Propulsion Conference. 2024: Pierre Baudis Convention Center • Toulouse, France.
    35.Choy, C.L., The heat capacity difference C − C for polymers. Journal of Polymer Science: Polymer Physics Edition, 1975. 13(6): p. 1263-1267.
    36.Lebedev, B. and I. Rabinovich, Heat capacities and thermodynamic functions of methyl methacrylate and poly (methyl methacrylate). Tr Khim Khim Tekhnol, 1971. 1: p. 8-11.
    37.Huang, P.-H., et al. Design of the Faraday cup for a Multi-Layer Insulator Vacuum Arc Thruster Characterization. in 2023 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES). 2023. IEEE.
    38.Huang, P.H., et al., Characterization of Vacuum Arc Thruster with Multi-layer Insulator at Different Delay Times of Double Pulses. 2024.
    39.McLyman, C.W.T., Transformer and inductor design handbook. 2004: CRC press.
    40.Yaoxing, H., et al., Morphological study and thermal analysis of surface modified α-FeOOH via in situ polymerization of methyl methacrylate. Materials research bulletin, 2004. 39(7-8): p. 1159-1166.
    41.Zhang, G.-H., et al., Influence of side-chain structure of polycarboxylate dispersant on the performance of coal water slurry. Fuel Processing Technology, 2017. 161: p. 1-7.
    42.Lim, E.-S., et al., Dielectric characteristics of polymer-ceramic-metal composites for the application of embedded passive devices. Integrated Ferroelectrics, 2005. 74(1): p. 53-60.
    43.Glascock, M.S., et al., Thermodynamic properties of hydroxylammonium nitrate-based electric solid propellant plasma. Journal of Thermophysics and Heat Transfer, 2020. 34(3): p. 522-529.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE