| 研究生: |
簡紹安 Chien, Shao-An |
|---|---|
| 論文名稱: |
有機聚合物電阻式記憶體與壓力感測器之研製 Investigation and Fabrication of Organic Polymer Resistive Type Memory and Pressure Sensor |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 電阻式記憶體 、壓阻式壓力感測器 |
| 外文關鍵詞: | Resistive random access memory, Piezoresistive pressure sensor |
| 相關次數: | 點閱:139 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文一共分為五個章節,第一章節介紹非揮發記憶體的種類以及簡單的介紹,包含元件結構、元件應用、開關特性以及導電機制,第二章節介紹壓力感測器的種類、原理及應用,並且比較彼此的優缺點,第三章節使用人體白蛋白製作電阻式記憶體,並且進一步分析元件的特性與統計,第四章節分別以雞蛋白及聚合物PDMS作為壓阻材料製作壓阻式壓力感測器,比較兩者間的特性,最後章節為結論與未來採用可撓性基板製作的可行性。
實驗的第一部分運用加水稀釋的人體白蛋白溶液製作電阻式隨機存取記憶體,並且發現其擁有單極性的電阻開關特性,其開關電流比為 98 倍,並且能維持 500 次的開關次數,且其高及低阻態可以分別維持 104 秒,在設置(Set)與重置(Reset)過程主要受到歐姆與空間電荷限制電流的導電機制所影響。
實驗的第二部分運用加水稀釋的雞蛋白溶液作為壓阻材料製作壓阻式壓力感測器,藉由壓力所造成的蛋白厚度改變,以量測不同的電阻值,可以得到一可變電阻,並且變化次數可達1013次,而使用聚合物PDMS加入石墨烯量子點混入甲苯作為壓阻材料,元件具有多階特性,變化次數為564次。
This thesis is divided into five chapters. In the first chapter, we introduces the types of nonvolatile memory and the simple introduction, including structure, application, switching characteristics and conductive mechanism. In the second chapter, the types, principles and applications of pressure sensors are introduced, and the advantages and disadvantages of each other are compared. In the third chapter, we used human albumin to fabricate resistive memory, and further analysis the characteristics and statistics of the device. In the fourth chapter, we used chicken albumin and PDMS as piezoresistive material to fabricate piezoresistive pressure sensor, and compare the characteristics between the two device. The final chapter is the conclusion and the feasibility of fabricating pressure sensors using flexible substrates in the future.
The first part of the experiment, we used water diluted human albumin solution to fabricate the resistive random access memory, we found that it has unipolar resistance switch characteristics, its switching current ratio was 98 times. The switching cycle could be up to 500 times. And the retention time was about 104 seconds. The Set and Reset processes are primarily affected by the conduction mechanism of the ohmic and space charge limited current.
The second part of the experiment, we used water diluted chicken albumin solution as piezoresistive material to fabricate piezoresistive pressure sensor. The thickness of albumin changed by pressure and we could measure the different resistance values. The result is a variable resistance, and the resistance change times was up to 1013. And the use of polymer PDMS by adding graphene quantum dots mixed with toluene as a piezoresistive material, the device would have multi-level behavior. The resistance change times was up to 564.
[1]http://elec424.rice.edu/gigamesh/images/Floating_Gate_Transistor.png
[2]https://zh.wikipedia.org
[3]"http://www.pcper.com/news/General-Tech/Phase-Change-Memory-might-be-
[4] A. Sawa, "Resistive switching in transition metal oxides," Materials Today, vol. 11, pp. 28-36, Jun 2008.
[5] Y. S. Lai, C. H. Tu, D. L. Kwong, and J. S. Chen, "Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications," Applied Physics Letters, vol. 87, pp. 122101-122103, Sep 19 2005.
[6] D. I. Son, D. H. Park, W. K. Choi, S. H. Cho, W. T. Kim, and T. W. Kim, "Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer," Nanotechnology, vol. 20, pp. 195203-195209, May 13 2009.
[7] M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, et al., "TiO[sub 2] anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching," Applied Physics Letters, vol. 89, pp. 223509-223511, 2006.
[8] D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, et al., "Atomic structure of conducting nanofilaments in TiO2 resistive switching memory," Nat Nanotechnol, vol. 5, pp. 148-153, Feb 2010.
[9] S. Lee, H. Kim, J. Park, and K. Yong, "Coexistence of unipolar and bipolar resistive switching characteristics in ZnO thin films," Journal of Applied Physics, vol. 108, pp. 076101-076103, Oct 1 2010.
[10] K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, "Anode-interface localized filamentary mechanism in resistive switching of TiO[sub 2] thin films," Applied Physics Letters, vol. 91, pp. 012907-012909, 2007.
[11] Ilia Valov and Michael N Kozicki , "Cation-based resistance change memory" Applied Physics Letters , Volume 46, Number 7 Published 31 January 2013
[12] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, "Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications," Applied Physics Letters, vol. 92, pp. 022110-022112, Jan 14 2008.
[13] M. H. Tang, Z. Q. Zeng, J. C. Li, Z. P. Wang, X. L. Xu, G. Y. Wang, et al., "Resistive switching behavior of La-doped ZnO films for nonvolatile memory applications," Solid-State Electronics, vol. 63, pp. 100-104, Sep 2011.
[14] A. Prakash, D. Jana, and S. Maikap, "TaOx-based resistive switching memories: prospective and challenges," Nanoscale Res Lett, vol. 8, pp. 418-434, 2013.
[15]http://www.stallinga.org/ElectricalCharacterization/2terminal/index.html.
[16]E. W. Lim and R. Ismail, "Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey," Electronics, vol. 4, pp. 586-613, Sep 2015.
[17]https://zh.wikipedia.org/wiki/%E5%A1%91%E6%80%A7%E8%AE%8A%E5%BD%A2
[18]https://wenda.toutiao.com/question/6393891355986231553/
[19]http://archive.eettaiwan.com/www.eettaiwan.com/ART_8800472044_644847_NT_d82edb59.HTM
[20]http://ctld.nthu.edu.tw/bookclub/blog/?update_id=361
[21]http://www.energyworx.com/smartgridsiot/
[22]J. W. Chang, C. G. Wang, C. Y. Huang, T. D. Tsai, T. F. Guo, and T. C. Wen, "Chicken albumen dielectrics in organic field-effect transistors," Adv Mater, vol. 23, pp. 4077-4081, Sep 15 2011.
[23] D. B. Jeon, J. Y. Bak, and S. M. Yoon, "Oxide Thin-Film Transistors Fabricated Using Biodegradable Gate Dielectric Layer of Chicken Albumen," Japanese Journal of Applied Physics, vol. 52, pp. 128002-128005, Dec 2013.
[24]https://www.google.com.tw/search?q=uman%E7%99%BD%E8%9B%8B%E7%99%BD&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjC0aGQnPrTAhUJlZQKHUnGBJwQ_AUICigB&biw=1366&bih=662#imgrc=_
[25] T. M. Tsai, K. C. Chang, T. C. Chang, Y. E. Syu, S. L. Chuang, G. W. Chang, et al., "Bipolar Resistive RAM Characteristics Induced by Nickel Incorporated Into Silicon Oxide Dielectrics for IC Applications," Ieee Electron Device Letters, vol.33, pp. 1696-1698, Dec 2012.
[26] B. Sun, Y. X. Liu, L. F. Liu, N. Xu, Y. Wang, X. Y. Liu, et al., "Highly uniform resistive switching characteristics of TiN/ZrO[sub 2]/Pt memory devices," Journal of Applied Physics, vol. 105, pp. 061630-061634, 2009.
[27] J. W. Chang, C. G. Wang, C. Y. Huang, T. D. Tsai, T. F. Guo, and T. C. Wen, "Chicken albumen dielectrics in organic field-effect transistors," Adv Mater, vol. 23, pp. 4077-4081, Sep 15 2011.
[28] D. B. Jeon, J. Y. Bak, and S. M. Yoon, "Oxide Thin-Film Transistors Fabricated Using Biodegradable Gate Dielectric Layer of Chicken Albumen," Japanese Journal of Applied Physics, vol. 52, pp. 128002-128005, Dec 2013.
[29] Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A "Stretchable Carbon Nanotube Strain Sensor for Human-Motion Detection." Nat. Nanotechnol.2011, 6, 296−301.
[30] Shin, M. K.; Oh, J.; Lima, M.; Kozlov, M. E.; Kim, S. J.;Baughman, R. H. "Elastomeric Conductive Composites based on Carbon Nanotube Forests." Adv. Mater. 2010, 22, 2663−2667.
[31] Ma, Z.; Su, B.; Gong, S.; Wang, Y.; Yap, L. W.; Simon, G. P.;Cheng, W. "Liquid-Wetting-Solid Strategy to Fabricate Stretchable Sensors for Human-Motion Detection." ACS Sens. 2016, 1, 303.
[32] Cotton, D. P. J.; Graz, I. M.; Lacour, S. P. A Multifunctional Capacitive Sensor for Stretchable Electronic Skins. IEEE Sens. J. 2009,9, 2008−2009.
[33] Rosset, S.; O’Brien, B. M.; Gisby, T.; Xu, D.; Shea, H. R.;Anderson, I. A. In Tunable Grating with Active Feedback; Bar-Cohen,Y., Ed.; Proc. SPIE; SPIE: Bellingham, WA, 2013; pp 86872F−86872F−86811.
[34] O’Brien, B.; Gisby, T.; Anderson, I. A. In Stretch Sensors for Human Body Motion; Bar-Cohen, Y., Ed.; Proc. SPIE; SPIE:Bellingham, WA, 2014; pp 905618−905618−905619.
[35] Cohen, D. J.; Mitra, D.; Peterson, K.; Maharbiz, M. M. A Highly Elastic, Capacitive Strain Gauge based on Percolating Nanotube Networks. Nano Lett. 2012, 12, 1821−1825.
[36] Cai, L.; Song, L.; Luan, P.; Zhang, Q.; Zhang, N.; Gao, Q.; Zhao,D.; Zhang, X.; Tu, M.; Yang, F.; Zhou, W.; Fan, Q.; Luo, J.; Zhou, W.;Ajayan, P. M.; Xie, S. Super-Stretchable, Transparent Carbon Nanotube-Based Capacitive Strain Sensors for Human Motion Detection. Sci. Rep. 2013, 3, 3048.
[37] Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S.L.; Lee, J. A.; Fox, C. H.; Bao, Z. Skin-Like Pressure and Strain Sensors based on Transparent Elastic Films of Carbon Nanotubes. Nat.Nanotechnol. 2011, 6, 788−792.
[38] Xu, F.; Zhu, Y. Highly Conductive and Stretchable Silver Nanowire Conductors. Adv. Mater. 2012, 24, 5117−5122.
[39] Yao, S.; Zhu, Y. Wearable Multifunctional Sensors Using Printed Stretchable Conductors Made of Silver Nanowires. Nanoscale 2014, 6,2345−2352.
[40] Hu, W.; Niu, X.; Zhao, R.; Pei, Q. Elastomeric Transparent Capacitive Sensors based on an Interpenetrating Composite of Silver Nanowires and Polyurethane. Appl. Phys. Lett. 2013, 102, 083303.
[41] Hammock, M. L.; Chortos, A.; Tee, B. C.; Tok, J. B.; Bao, Z.25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress. Adv.Mater. 2013, 25, 5997−6038.
[42] Jiang, K.; Li, Q.; Fan, S. Nanotechnology: Spinning Continuous Carbon Nanotube Yarns. Nature 2002, 419, 801.
[43] Jiang, K.; Wang, J.; Li, Q.; Liu, L.; Liu, C.; Fan, S. Superaligned Carbon Nanotube Arrays, Films, and Yarns: A Road to Applications.Adv. Mater. 2011, 23, 1154−1161.
[44] Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology.Science 2004, 306, 1358−1361.
[45] Segev-Bar, M.; Haick, H. Flexible Sensors based on Nanoparticles.ACS Nano 2013, 7, 8366−8378.
[46] Junisbekov, T. M.; Kestel′man, V. N.; Malinin, N. I. Stress Relaxation in Viscoelastic Materials; Science Publishers: Enfield, NH,2003.
[47] Demczyk, B. G.; Wang, Y. M.; Cumings, J.; Hetman, M.; Han,W.; Zettl, A.; Ritchie, R. O. Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes. Mater. Sci. Eng., A 2002, 334, 173−178.
[48] D. Y. Guo, Z. P. Wu, Y. H. An, P. G. Li, P. C. Wang, X. L. Chu, et al., "Unipolar resistive switching behavior of amorphous gallium oxide thin films for nonvolatile memory applications," Applied Physics Letters, vol. 106, pp. 042105-042108, Jan 26 2015.
[49] Y. Sharma, P. Misra, and R. S. Katiyar, "Unipolar resistive switching behavior of amorphous YCrO3 films for nonvolatile memory applications," Journal of Applied Physics, vol. 116, pp. 084505-084509, Aug 28 2014.
[50] C. Y. Liu, Y. R. Shih, and S. J. Huang, "Unipolar resistive switching in a transparent ITO/SiOx/ITO sandwich fabricated at room temperature," Solid State Communications, vol. 159, pp. 13-17, Apr 2013.
[51] S. Hyunjun, C. Dooho, L. Dongsoo, S. Sunae, L. Myong-Jae, Y. In-Kyeong, et al., "Resistance-switching Characteristics of polycrystalline Nb/sub 2/O/sub 5/ for nonvolatile memory application," IEEE Electron Device Letters, vol. 26, pp. 292- 294, 2005.