| 研究生: |
楊智富 Yang, Jr-Fu |
|---|---|
| 論文名稱: |
適用於電壓式與電流式電化學生醫感測方法之信號處理單晶片設計 Design of System-on-a-Chip Signal Processing Circuits for Both Voltage- and Current-Mode Electrochemical Bio-sensing Methods |
| 指導教授: |
魏嘉玲
Wei, Chia-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 生醫感測器 、電化學 、計時電位法 、循環伏安法 、電流導向數位類比轉換器 |
| 外文關鍵詞: | Biosensor, electrochemical, Chronopotentiometry (CP), Cyclic Voltammetry (CV), Current-Steering Digital-to-Analog Converter |
| 相關次數: | 點閱:128 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提出一顆可以配合使用電化學的電壓式與電流式分析方法來量測生化溶液濃度的整合晶片。電化學的分析形式選用循環伏安法(CV)與計時電位法(CP)兩種,實驗時電極採用三電極式的外接石墨電極。本晶片的輸入級為一電流導向數位類比轉換器,將數位輸入訊號轉成對應的類比訊號,來提供給電極與溶液使用,接著再經由量測電路轉換後輸出,最後再去分析這些訊號以量測溶液的濃度。此晶片所使用的製程是由台灣積體電路公司所提供的TSMC 0.35μm 2P4M製程,所使用之面積為1.65×1.71mm2,由量測的結果可知5V元件所使用的功率是5.66mW,而3.3V元件所消耗的功率為2.65 mW。經實驗證明,此晶片在兩種分析方式皆可量測出溶液濃度。
A chip to measure the solution concentration by using electro-chemical methods is proposed in this thesis. Cyclic voltammetry (CV) and chronopotentiometry (CP) are the two most common electrochemical analysis methods, and hence, they are chosen to verify the proposed chip. Three-electrode carbon screen-printed electrodes were used in the experiments. The input stage of the chip is a current-steering digital-to-analog converter, which is used to convert the digital input to its corresponding analog signals. Then, the signals is applied to the electrodes and solution, and the corresponding voltage or current signals are measured and outputted. Finally, the concentration of solution can be got by analyzing these output signals. The proposed chip was implemented by using the TSMC 0.35μm 2P4M CMOS process with a die area of 1.65 × 1.71 mm2. The power dissipation of the 5V-devices is 5.66mW, while that of the 3.3V-devices is 2.65mW. Accorrding to the experimental results, the concentration of solution indeed can be measured successfully by using the proposed chip.
[ 1 ] J. H. Cheng, “The Study of the Glassy Garbon Electrode Modified by Platinum Nanoparticles and Its Application to Glucose Biosensor,” M.S thesis, Dept. Chemical Engineering, Southern Taiwen University, Tainan, Taiwan 2004.
[ 2 ] K. Y Lee, “A study on the glucose biosensor with a high sensitivity,” M.S thesis, Dept. National Chemical Engineering, Yunlin University, Yunlin, Taiwan, 2006.
[ 3 ] D. R. Thevenot, K. Toth, R. A. Durst, and G.S. Wilson, “Electrochemical biosensors: Recommended definitions and classification,” Pure and applied chemistry, vol. 71, pp. 2333- 2348. 1999.
[ 4 ] J. J. Chieh, “Fiber-optic biosensor,” The Physical Society of Republic of China, Vol. 28, no. 4, pp 704-710, Aug. 2006.
[ 5 ] L. C. Clark and C. Lyons, “Electrode system for continuous monitoring in cardiovascular surgery,” Annals of the New York Academy of Sciences, vol. 102, pp. 29-45, 1962.
[ 6 ] D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, “Biosensors for detection of pathogenic bacteria (review),” Biosensors and Bioelectronics, vol. 14, pp. 599-624, 1999.
[ 7 ] A. F. Collings and C. Frank, “Biosensors: recent advances,” Reports on Progress in Physics, vol. 60, pp. 1397-1445. 1997.
[ 8 ] A. J. Bard and L. R. Faulkner, Electrochemical Methods-Fundamentals and Applications, 2nd edition, New York, NY: Wiley, 2001.
[ 9 ] C. C. hu, Fundamentals and Methods of Electrochemistry, 2nd edition, Wu-Nan Book Inc, 2002.
[ 10 ] H. j. Lin, “利用循環電位儀偵測氧化還原電位及電流,” http://www.scribd.com/doc/37395276/CV
[ 11 ] T. A. Chen, “A Dual-Mode AC Signal Processing IC for Bio-Sample Detection,” M.S thesis, Dept. Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, 2010.
[ 12 ] S. M. Martin, F. H. Gebara, B. J. Larivee, and R. B. Brown, “A CMOS- integrated microinstrument for trace detection of heavy metals,” IEEE Journal of Solid State Circuits, vol. 40, no. 12, pp. 2777–2786, Dec. 2005.
[ 13 ] S. B. Prakash, P. Abshire, M. Urdaneta, M. Christophersen, and E. Smela, “A CMOS potentiostat for control of integrated MEMS actuators,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 5555-5558, 2006.
[ 14 ] P. M. Levine, P. Gong, R. Levicky, and K. L. Shepard, “Active CMOS sensor array for electrochemical biomolecular detection,” IEEE Journal of Solid State Circuits, vol. 43, no. 8, pp. 1859-1871, Aug. 2008.
[ 15 ] C. Y. Huang, Y. C. Huang, T. Y. Lin, C. H. Chang, and X. F. Li, “An SOC- based portable cyclic voltammetry potentiostat for micro-albumin biosensors,” IEEE Conference on Industrial Electronics and Applications, pp 604-609, May 2007
[ 16 ] M. Roham, D. P. Daberkow, E. S. Ramsson, D. P. Covey, S. Pakdeeronachit, P. A. Garris, and P. Mohseni, “A wireless IC for wide-range neurochemical monitoring using amperometry and fast-scan cyclic voltammetry” IEEE Transactions on Biomedical Circuits and Systems, vol. 2, pp. 3-9, Mar 2008.
[ 17 ] N Fietkau, C. A. Paddon, F. L. Bhatti, T. J. Donohoe, and R. G. Compton, “Cryo-electrochemistry in tetrahydrofuran the regioselective electrochemical reduction of a phenyl sulfone fast-scan cyclic voltammetry investigations,” Journal of Electroanalytical Chemistry, vol. 593, no. 1-2, pp. 131-141, Aug. 2006.
[ 18 ] M. M. Ahmadi and G. A. Jullien, “Current-mirror-based potentiostats for three-electrode amperometric electrochemical sensors,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 7, pp. 1339-1348, July 2009.
[ 19 ] M. Carminati, G. Ferrari, and M. Sampietro, “High sensitivity potentiostat system for sub-micron bio-sensors impedance measurements,” Proceedings of the 15th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2008. pp. 750-753, 2008.
[ 20 ] P. M. Nawghare, K. Singhb, and S. S. Limaye, “PC based instrument for impedance analysis, cyclic voltammetry and transient analysis,” Solid State Ionics, vol. 90, no. 1-4, pp. 295-301, Sep. 1996.
[ 21 ] T. H. English, “An apparatus for cyclic-chronopotentiometry in non-aqueous solvents,” Journal of Physics E: Scientific Instruments, vol. 3, no. 6, pp. 69-73, Jan. 1970.
[ 22 ] A. Molina, M. L. Alcaraz, F. Saavedra, and J. G. Lez, “Application of current reversal chronopotentiometry and cyclic chronopotentiometry to the study of reactant andor product adsorption at a plane electrode,” Electrochimica Acta 44 (1998), pp. 1263-1272.
[ 23 ] M. J. Zhao, C. Cai, L. Wang, Z. Zhang, and J. Q. Zhang, “Effect of zinc immersion pretreatment on the electro-deposition of Ni onto AZ91D magnesium alloy,” Surface and Coatings Technology, vol. 205, no. 7, pp. 2160-2166, Dec 2010.
[ 24 ] A. Amirudin, D. Thierry, “Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals,” Progress in Organic Coatings, vol. 26, no. 1, pp. 1-28, Aug. 1995.
[ 25 ] D. Rairigh and A. Mason, “Compact impedance spectroscopy for high density sensor Arrays,” 2007 IEEJ International Analog VLSI Workshop, Nov. 2007.
[ 26 ] L. Weinstein, W. Yourey, J. Gural, and G. G. Amatucci, “Electrochemical impedance spectroscopy of electrochemically self-assembled lithium iodine batteries,” Journal of the Electrochemical Society. vol. 155, pp. A590-A598, June 2008.
[ 27 ] A. M. Dhirde, N. V. Dale, H. Salehfar, M. D. Mann, and T. H. Han, “Equivalent electric circuit modeling and performance analysis of a PEM fuel cell stack using impedance spectroscopy” IEEE Transactions on Energy Conversion, vol. 25, no. 3, pp. 778-786, Sep. 2010.
[ 28 ] C. Yang, D. Rairigh and A. Mason, “Fully integrated impedance spectroscopy systems for biochemical sensor array,” Proceedings of IEEE Biomedical Circuits and Systems Conference Healthcare Technology, BiOCAS2007, pp. 21-24, Nov. 2007
[ 29 ] C. Yang, D. Rairigh, and A. Mason, “On-chip electrochemical impedance spectroscopy for biosensor arrays,” Proceedings of IEEE Sensors 2006 5th IEEE Conference on Sensors, pp. 93-96, 2006.
[ 30 ] L. X. Bu1 and W. Wang, “Studies on the electrodeposition behavior of selenium by electrochemical impedance spectroscopy and cyclic voltammetry,” 2007 26th International Conference on Thermoelectrics, ICT, Proceedings, pp. 413-416, June 2007.
[ 31 ] A. Manickam, A. Chevalier, M. McDermott, A.D. Ellington, and A. Hassibi, ‘A CMOS Electrochemical Impedance Spectroscopy (EIS) Biosensor Array,’ IEEE Transactions on Biomedical Circuits and Systems, vol. 4, no. 6 part 1, pp. 379-390, Dec 2010.
[ 32 ] A. Manickam, A. Chevalier, M. McDermott, A. D. Ellington, and A. Hassibi, “A CMOS Electrochemical Impedance Spectroscopy Biosensor Array for Label-Free Biomolecular Detection,” 2010 IEEE International Solid-State Circuits Conference, ISSCC 2010 - Digest of Technical Papers, vol. 53, pp. 130-131, 2010.
[ 33 ] Design Dacuments for TSMC 0.35μm 2P4M mixed-signal.
[ 34 ] D. Johns and K. Martin, Analog integrated circuit design, John Wiley & Sons Inc., 1997.
[ 35 ] B. Razavi, Design of Analog CMOS Integrate Circuit, Boston MA: McGraw-Hill, 2001
[ 36 ] M. J. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE Journal of Solid State Circuits, vol. 24, pp. 1433-1440, Oct. 1989.
[ 37 ] J. Bastos, M. Steyaert, and W. Sansen, “A high yield 12-bit 250-MS/s CMOS D/A converter,” Proceedings of the Custom Integrated Circuits Conference, pp. 431-434, May 1996.
[ 38 ] J. Bastos, A. M Marques, M. S. J. Steyaert, and W. Sansen, “A 12-bit intrinsic accuracy high speed CMOS DAC,” IEEE Journal of Solid State Circuits, vol. 33, no. 12, pp. 1959-1969, Dec. 1998.
[ 39 ] V. D. Bosch, M. Steyaert, and W. Sansen, “An accurate statistical yield model for CMOS current-steering D/A converters,” Analog Integrated Circuits and Signal Processing, Vol. 29, No. 3, pp. 173-180, Dec. 2001.
[ 40 ] V. D. Plas, A.M. Geert, J. Vandenbussche, W. Sansen, M.S.J. Steyaert, and G.G.E. Gielen, “A 14-bit intrinsic accuracy Q2 random walk CMOS DAC,” IEEE Journal of Solid State Circuits, vol. 34, no. 12, pp. 1708-1718, Dec. 1999.
[ 41 ] B. Razavi, Principals of Data Conversion System Design, New York :IEEE Press, 1995.
[ 42 ] J. M. Fournier, and P. Senn, “130-MHz 8-b CMOS video DAC for HDTV applications,” IEEE Journal of Solid State Circuits, vol. 26, no. 7, pp. 1073-1077, July 1991.
[ 43 ] A. V. den Bosch, M. A. F. Borremans, M. S. J. Steyaert, and W. Sansen, “A 10-bit 1-G sample/s nyquist current-steering CMOS D/A converter,” IEEE Journal of Solid State Circuits, vol. 36, no. 3, pp. 315–324, Mar. 2001.
[ 44 ] T. Chen and G. G. E. Gielen, “A 14-bit 200-MHz current-steering DAC with switching-sequence post-adjustment alibration,” IEEE Journal of Solid State Circuits, vol. 42, no. 11, pp. 2386-2394, Nov. 2007.
[ 45 ] S. M. Ha, T. K. Nam, and K. S. Yoon, “An I/Q channel 12 bit 120MS/s CMOS DAC with three stage thermometer decoders for WLAN,” IEEE Asia-Pacific Conference on Circuits and Systems, Proceedings, APCCAS, pp. 355-358. Dec 2006.
[ 46 ] J. Deveugele and M. S. J. Steyaert “A 10-bit 250-MS binary-weighted current-steering DAC” IEEE Journal of Solid State Circuits, vol. 41, no. 2 , pp. 320–329 Feb. 2006.
[ 47 ] K. O’Sullivan, C. Gorman, M. Hennessy, and V. Callaghan, “A 12-bit 320- MSample/s current-steering CMOS D/A converter in 0.44 mm2,” IEEE Journal of Solid State Circuits, vol. 39, no. 7, pp. 1064-1072, Jul. 2004
[ 48 ] D. Marano, G. Palumbo, and S. Pennisi, “A novel low-power high-speed rail-to-rail class-B buffer amplifier for LCD output drivers,” IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems, ISCAS, pp. 2816-2819, 2010.
[ 49 ] D. Marano, G. Palumbo, and S. Pennisi, “A compact low-power high slew-rate rail-to-rail class-AB buffer amplifier with for LCD driver,” IEEE Conference on Electron Devices and Solid-State Circuits, pp. 397-400, 2007.
[ 50 ] S. K. Kim, Y. S. Son, and G. H. Cho, “Low-power high-slew-rate CMOS buffer amplifier for flat panel display drivers,” Electronics Letters, vol. 42, no. 4, pp. 214-216, Feb. 2006.
[ 51 ] A. Chaubey and B. D. Malhotra, “Mediated biosensors,” Biosensors and Bioelectronics, vol. 17, no. 6-7, pp. 441-456, June 26, 2002