| 研究生: |
李宜臻 Lee, Yi-Chen |
|---|---|
| 論文名稱: |
以富勒烯作為光觸媒在可見光下降解有機污染物 Photodegradation of Organic Pollutants Using Fullerenes as Photocatalysts Under Visible Light |
| 指導教授: |
侯文哲
Hou, Wen-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 富勒烯材料 、光催化降解 、光觸媒 、可見光 、抗氧化劑 |
| 外文關鍵詞: | fullerene, photodegradation, visible light, antioxidant |
| 相關次數: | 點閱:83 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現行廢水處理技術多使用如TiO2和ZnO等需要紫外光來驅動(λ ≤ 365 nm)的半導體光催化材料來降解污染物,但紫外光處理成本高且耗能,對環境相對不友善,因此多數研究轉往發掘能取代傳統TiO2之光催化材料,近年來新興奈米碳材富勒烯(fullerene,含C60、C70、C76)的發現引起了研究熱潮,由於富勒烯材料在可見光(λ ≥ 400 nm)範圍即有光活性,因此可在太陽光下作用,有效利用太陽光譜中佔 > 80 - 85%的可見光能量,減少電能使用,是對環境友善的光催化材料。
本研究目的為探究nC60及相關富勒烯碳材在可見光下之光活性,利用高強度超音波震盪法製備高濃度nC60膠體水溶液作為光觸媒,在可見光下進行有機污染物之降解,並探討其可能反應機制,同時也對反應參數如光觸媒及染料污染物劑量、pH值變化、抗氧化劑之添加影響進行討論,而本研究首次針對不同富勒烯材料進行光活性比較,將nC60、nC70及富勒醇(polyhydroxylated fullerene i.e., fullerol)置於同條件下,探討造成其降解效果歧異之原因。
本研究選擇染劑作為目標有機污染物,以玫瑰紅B、甲基橙及亞甲藍分別代表兩性離子型、陰離子型及陽離子型三種不同類型的污染物,藉由染劑的脫色反應程度作為材料光催化活性之評估依據。結果顯示以本研究方法製備之穩定高濃度nC60膠體溶液,成功地在可見光下降解有機污染物—染劑,比較不同富勒烯材料,fullerol與nC60對RhB有較佳的光催化降解效率,而MO則是nC60與nC70,總體而言不論哪一種染劑nC60皆具有優秀的光催化降解效果。
In recent years, the studies of nanocarbon materials become more popular, especially fullerene C60. As one of the earliest discovered nanomaterials, the basic properties of C60 have been studied completely. Compare to traditional photocatalysts, such as TiO2, CdS, fullerenes have photoactivity under visible light (λ ≥ 400 nm), which means fullerenes can utilize solar light efficiently. In this study, we used aqueous fullerene clusters nC60, nC70 and fullerol as photocatalysts and studied the photoactivity of fullerene materials under visible light. The aqueous fullerene clusters were produced by high intensity sonication method and was used to catalyze the degradation of organic pollutants. The organic pollutants here we used were dyes, rhodamine B (RhB), methyl orange (MO) and methylene blue (MB). Here, we first compared with the photoactivity of different fullerene materials under same conditions and figured out the probable reaction pathways. The result indicated that the nC60 we produced successfully degraded the organic pollutants, dyes. Compared nC60 with nC70 and fullerol, nC60 performed more excellent ability of photosensitized degradation in all system.
(1) Li, G.-S.; Zhang, D.-Q.; Yu, J. C. A New Visible-Light Photocatalyst: CdS Quantum Dots Embedded Mesoporous TiO2. Environ. Sci. Technol. 2009, 43 (18), 7079–7085.
(2) Seifollahi Bazarjani, M.; Hojamberdiev, M.; Morita, K.; Zhu, G.; Cherkashinin, G.; Fasel, C.; Herrmann, T.; Breitzke, H.; Gurlo, A.; Riedel, R. Visible Light Photocatalysis with c-WO3–x/WO3×H2O Nanoheterostructures In Situ Formed in Mesoporous Polycarbosilane-Siloxane Polymer. J. Am. Chem. Soc. 2013, 135 (11), 4467–4475.
(3) Murayama, H.; Tomonoh, S.; Alford, J. M.; Karpuk, M. E. Fullerene Production in Tons and More: From Science to Industry. Fuller. Nanotub. Carbon Nanostructures 2005, 12 (1–2), 1–9.
(4) Arbogast, J. W.; Darmanyan, A. P.; Foote, C. S.; Diederich, F. N.; Whetten, R. L.; Rubin, Y.; Alvarez, M. M.; Anz, S. J. Photophysical properties of sixty atom carbon molecule (C60). J. Phys. Chem. 1991, 95 (1), 11–12.
(5) Arbogast, J. W.; Foote, C. S. Photophysical properties of C70. J. Am. Chem. Soc. 1991, 113 (23), 8886–8889.
(6) Jafvert, C. T.; Kulkarni, P. P. Buckminsterfullerene’s (C60) Octanol−Water Partition Coefficient (Kow) and Aqueous Solubility. Environ. Sci. Technol. 2008, 42 (16), 5945–5950.
(7) Lee, J.; Yamakoshi, Y.; Hughes, J. B.; Kim, J.-H. Mechanism of C60 Photoreactivity in Water: Fate of Triplet State and Radical Anion and Production of Reactive Oxygen Species. Environ. Sci. Technol. 2008, 42 (9), 3459–3464.
(8) Lyon, D. Y.; Adams, L. K.; Falkner, J. C.; Alvarez, P. J. J. Antibacterial Activity of Fullerene Water Suspensions: Effects of Preparation Method and Particle Size. Environ. Sci. Technol. 2006, 40 (14), 4360–4366.
(9) Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318 (6042), 162–163.
(10) Marcus, Y.; Smith, A. L.; Korobov, M. V.; Mirakyan, A. L.; Avramenko, N. V.; Stukalin, E. B. Solubility of C60 Fullerene. J. Phys. Chem. B 2001, 105 (13), 2499–2506.
(11) Ruoff, R. S.; Tse, D. S.; Malhotra, R.; Lorents, D. C. Solubility of fullerene (C60) in a variety of solvents. J. Phys. Chem. 1993, 97 (13), 3379–3383.
(12) Rao, C. N. R.; Seshadri, R.; Govindaraj, A.; Sen, R. Fullerenes, nanotubes, onions and related carbon structures. Mater. Sci. Eng. R Rep. 1995, 15 (6), 209–262.
(13) Bezmel’nitsyn, V. N.; Eletskii, A. V.; Okun, M. V. Fullerenes in solutions. Phys.-Uspekhi 1998, 41 (11), 1091.
(14) Alargova, R. G.; Deguchi, S.; Tsujii, K. Stable Colloidal Dispersions of Fullerenes in Polar Organic Solvents. J. Am. Chem. Soc. 2001, 123 (43), 10460–10467.
(15) Deguchi, S.; Alargova, R. G.; Tsujii, K. Stable Dispersions of Fullerenes, C60 and C70, in Water. Preparation and Characterization. Langmuir 2001, 17 (19), 6013–6017.
(16) Fortner, J. D.; Lyon, D. Y.; Sayes, C. M.; Boyd, A. M.; Falkner, J. C.; Hotze, E. M.; Alemany, L. B.; Tao, Y. J.; Guo, W.; Ausman, K. D.; et al. C60 in Water: Nanocrystal Formation and Microbial Response. Environ. Sci. Technol. 2005, 39 (11), 4307–4316.
(17) c70.gif(GIF 圖片,300x270 像素) https://www.univie.ac.at/qfp/research/matterwave/decoherence/c70.gif (accessed Jul 10, 2017).
(18) Definition of Allotropy of Carbon http://www.icoachmath.com/chemistry/definition-of-allotropy-of-carbon.html (accessed Jul 10, 2017).
(19) ee1afee231208321f95929ade3f8424c.jpg(JPEG 圖片,227x211 像素) https://s-media-cache-ak0.pinimg.com/236x/ee/1a/fe/ee1afee231208321f95929ade3f8424c.jpg (accessed Jul 10, 2017).
(20) Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science 1992, 258 (5087), 1474–1476.
(21) Ramuz, M. P.; Vosgueritchian, M.; Wei, P.; Wang, C.; Gao, Y.; Wu, Y.; Chen, Y.; Bao, Z. Evaluation of Solution-Processable Carbon-Based Electrodes for All-Carbon Solar Cells. ACS Nano 2012, 6 (11), 10384–10395.
(22) Bakry, R.; Vallant, R. M.; Najam-ul-Haq, M.; Rainer, M.; Szabo, Z.; Huck, C. W.; Bonn, G. K. Medicinal applications of fullerenes https://www.researchgate.net/publication/5648981_Medicinal_applications_of_fullerenes (accessed Jun 29, 2017).
(23) Yamakoshi, Y.; Umezawa, N.; Ryu, A.; Arakane, K.; Miyata, N.; Goda, Y.; Masumizu, T.; Nagano, T. Active Oxygen Species Generated from Photoexcited Fullerene (C60) as Potential Medicines: O2-• versus 1O2. J. Am. Chem. Soc. 2003, 125 (42), 12803–12809.
(24) Lee, J.; Fortner, J. D.; Hughes, J. B.; Kim, J.-H. Photochemical Production of Reactive Oxygen Species by C60 in the Aqueous Phase During UV Irradiation. Environ. Sci. Technol. 2007, 41 (7), 2529–2535.
(25) Arbogast, J. W.; Foote, C. S.; Kao, M. Electron transfer to triplet fullerene C60. J. Am. Chem. Soc. 1992, 114 (6), 2277–2279.
(26) Hwang, K. C.; Mauzerall, D. Vectorial electron transfer from an interfacial photoexcited porphyrin to ground-state fullerene C60 and C70 and from ascorbate to triplet C60 and C70 in a lipid bilayer. J. Am. Chem. Soc. 1992, 114 (24), 9705–9706.
(27) Krusic, P. J.; Wasserman, E.; Parkinson, B. A.; Malone, B.; Holler, E. R.; Keizer, P. N.; Morton, J. R.; Preston, K. F. Electron spin resonance study of the radical reactivity of C60. J. Am. Chem. Soc. 1991, 113 (16), 6274–6275.
(28) Kamat, P. V.; Haria, M.; Hotchandani, S. C60 Cluster as an Electron Shuttle in a Ru(II)-Polypyridyl Sensitizer-Based Photochemical Solar Cell. J. Phys. Chem. B 2004, 108 (17), 5166–5170.
(29) Hou, W.-C.; Jafvert, C. T. Photochemical Transformation of Aqueous C60 Clusters in Sunlight. Environ. Sci. Technol. 2009, 43 (2), 362–367.
(30) Juha, L.; Hamplová, V.; Kodymová, J.; Špalek, O. Reactivity of fullerenes with chemically generated singlet oxygen. J. Chem. Soc. Chem. Commun. 1994, No. 21, 2437–2438.
(31) Schuster, D. I.; Baran, P. S.; Hatch, R. K.; Khan, A. U.; Wilson, S. R. The role of singlet oxygen in the photochemical formation of C60O. Chem. Commun. 1998, No. 22, 2493–2494.
(32) Creegan, K. M.; Robbins, J. L.; Robbins, W. K.; Millar, J. M.; Sherwood, R. D.; Tindall, P. J.; Cox, D. M.; McCauley, J. P.; Jones, D. R. Synthesis and characterization of C60O, the first fullerene epoxide. J. Am. Chem. Soc. 1992, 114 (3), 1103–1105.
(33) Hou, W.-C.; Jafvert, C. T. Photochemistry of Aqueous C60 Clusters: Evidence of 1O2 Formation and its Role in Mediating C60 Phototransformation. Environ. Sci. Technol. 2009, 43 (14), 5257–5262.
(34) Kong, L.; Zepp, R. G. Production and consumption of reactive oxygen species by fullerenes. Environ. Toxicol. Chem. 2012, 31 (1), 136–143.
(35) Ge, L.; Moor, K.; Zhang, B.; He, Y.; Kim, J.-H. Electron transfer mediation by aqueous C 60 aggregates in H 2 O 2 /UV advanced oxidation of indigo carmine. Nanoscale 2014, 6 (22), 13579–13585.
(36) Wakimoto, R.; Kitamura, T.; Ito, F.; Usami, H.; Moriwaki, H. Decomposition of methyl orange using C60 fullerene adsorbed on silica gel as a photocatalyst via visible-light induced electron transfer. Appl. Catal. B Environ. 2015, 166, 544–550.
(37) Lim, J.; Kim, H.; Alvarez, P. J. J.; Lee, J.; Choi, W. Visible Light Sensitized Production of Hydroxyl Radicals Using Fullerol as an Electron-Transfer Mediator. Environ. Sci. Technol. 2016, 50 (19), 10545–10553.
(38) Guo, Y.; Li, W.; Yan, J.; Moosa, B.; Amad, M.; Werth, C. J.; Khashab, N. M. Fullerene-Catalyzed Reduction of Azo Derivatives in Water under UV Irradiation. Chem. – Asian J. 2012, 7 (12), 2842–2847.
(39) Kulkarni, P. P.; Jafvert, C. T. Solubility of C60 in Solvent Mixtures. Environ. Sci. Technol. 2008, 42 (3), 845–851.
(40) V. Andrievsky, G.; V. Kosevich, M.; M. Vovk, O.; S. Shelkovsky, V.; A. Vashchenko, L. On the production of an aqueous colloidal solution of fullerenes. J. Chem. Soc. Chem. Commun. 1995, 0 (12), 1281–1282.
(41) Semenov, K. N.; Charykov, N. A.; Keskinov, V. A.; Piartman, A. K.; Blokhin, A. A.; Kopyrin, A. A. Solubility of Light Fullerenes in Organic Solvents. J. Chem. Eng. Data 2010, 55 (1), 13–36.
(42) Nakajima Yamakoshi, Y.; Yagami, T.; Fukuhara, K.; Sueyoshi, S.; Miyata, N. Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests. J. Chem. Soc. Chem. Commun. 1994, 0 (4), 517–518.
(43) Andrievsky, G.; Klochkov, V.; Derevyanchenko, L. Is the C60 Fullerene Molecule Toxic?! Fuller. Nanotub. Carbon Nanostructures 2007.
(44) Cheng, X.; Kan, A. T.; Tomson, M. B. Naphthalene Adsorption and Desorption from Aqueous C60 Fullerene. J. Chem. Eng. Data 2004, 49 (3), 675–683.
(45) Brant, J.; Lecoanet, H.; Hotze, M.; Wiesner, M. Comparison of Electrokinetic Properties of Colloidal Fullerenes (n-C60) Formed Using Two Procedures. Environ. Sci. Technol. 2005, 39 (17), 6343–6351.
(46) Dhawan, A.; Taurozzi, J. S.; Pandey, A. K.; Shan, W.; Miller, S. M.; Hashsham, S. A.; Tarabara, V. V. Stable Colloidal Dispersions of C60 Fullerenes in Water: Evidence for Genotoxicity. Environ. Sci. Technol. 2006, 40 (23), 7394–7401.
(47) Chang, X.; Vikesland, P. J. UV–vis Spectroscopic Properties of nC60 Produced via Extended Mixing. Environ. Sci. Technol. 2011, 45 (23), 9967–9974.
(48) Liang, C.; Su, H.-W. Identification of Sulfate and Hydroxyl Radicals in Thermally Activated Persulfate http://pubs.acs.org/doi/full/10.1021/ie9002848 (accessed Jul 2, 2017).
(49) Andrievsky, G. V.; Klochkov, V. K.; Bordyuh, A. B.; Dovbeshko, G. I. Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV–Vis spectroscopy. Chem. Phys. Lett. 2002, 364 (1), 8–17.
(50) Moor, K. J.; Snow, S. D.; Kim, J.-H. Differential Photoactivity of Aqueous [C60] and [C70] Fullerene Aggregates. Environ. Sci. Technol. 2015, 49 (10), 5990–5998.
(51) Kato, H.; Nakamura, A.; Takahashi, K.; Kinugasa, S. Size effect on UV-Vis absorption properties of colloidal C 60 particles in water. Phys. Chem. Chem. Phys. 2009, 11 (25), 4946–4948.
(52) Ramette, R. W.; Sandell, E. B. Rhodamine B Equilibria. J. Am. Chem. Soc. 1956, 78 (19), 4872–4878.
(53) Bae, S.; Kim, S.; Lee, S.; Choi, W. Dye decolorization test for the activity assessment of visible light photocatalysts: Realities and limitations. Catal. Today 2014, 224, 21–28.
(54) Sandberg, R. G.; Henderson, G. H.; White, R. D.; Eyring, E. M. Kinetics of acid dissociation-ion recombination of aqueous methyl orange. J. Phys. Chem. 1972, 76 (26), 4023–4025.
(55) Brown, G. T.; Darwent, J. R. Photoreduction of methyl orange sensitized by colloidal titanium dioxide. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1984, 80 (6), 1631–1643.
(56) Mills, A.; Wang, J. Photobleaching of methylene blue sensitised by TiO2: an ambiguous system? J. Photochem. Photobiol. Chem. 1999, 127 (1), 123–134.
(57) Yan, X.; Ohno, T.; Nishijima, K.; Abe, R.; Ohtani, B. Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania. Chem. Phys. Lett. 2006, 429 (4), 606–610.
(58) Zhao, J.; Wu, T.; Wu, K.; Oikawa, K.; Hidaka, H.; Serpone, N. Photoassisted Degradation of Dye Pollutants. 3. Degradation of the Cationic Dye Rhodamine B in Aqueous Anionic Surfactant/TiO2 Dispersions under Visible Light Irradiation: Evidence for the Need of Substrate Adsorption on TiO2 Particles. Environ. Sci. Technol. 1998, 32 (16), 2394–2400.
(59) Konstantinou, I. K.; Albanis, T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Appl. Catal. B Environ. 2004, 49 (1), 1–14.
(60) Chen, F.; Xie, Y.; Zhao, J.; Lu, G. Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation. Chemosphere 2001, 44 (5), 1159–1168.
(61) Chatterjee, D.; Mahata, A. Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface. J. Photochem. Photobiol. Chem. 2002, 153 (1), 199–204.
(62) Khan, M. M.; Lee, J.; Cho, M. H. Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: An electron relay effect. J. Ind. Eng. Chem. 2014, 20 (4), 1584–1590.
(63) Ge, L. Novel visible-light-driven Pt/BiVO4 photocatalyst for efficient degradation of methyl orange. J. Mol. Catal. Chem. 2008, 282 (1), 62–66.
(64) Cao, J.; Luo, B.; Lin, H.; Xu, B.; Chen, S. Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag3PO4 hybrids for degradation of methyl orange. J. Hazard. Mater. 2012, 217, 107–115.
(65) Brant, J. A.; Labille, J.; Robichaud, C. O.; Wiesner, M. Fullerol cluster formation in aqueous solutions: Implications for environmental release. J. Colloid Interface Sci. 2007, 314 (1), 281–288.
(66) Differential Photoactivity of Aqueous [C60] and [C70] Fullerene Aggregates - Environmental Science & Technology (ACS Publications) http://pubs.acs.org/doi/full/10.1021/acs.est.5b00100 (accessed Jul 7, 2017).
(67) Improving the Visible Light Photoactivity of Supported Fullerene Photocatalysts through the Use of [C70] Fullerene - Environmental Science & Technology (ACS Publications) http://pubs.acs.org/doi/10.1021/es505888d (accessed Jul 7, 2017).
(68) Li, Y.; Lu, A.; Jin, S.; Wang, C. Photo-reductive decolorization of an azo dye by natural sphalerite: Case study of a new type of visible light-sensitized photocatalyst. J. Hazard. Mater. 2009, 170 (1), 479–486.
(69) Inactivation of Bacteriophages via Photosensitization of Fullerol Nanoparticles - Environmental Science & Technology (ACS Publications) http://pubs.acs.org/doi/10.1021/es0708215 (accessed Jul 7, 2017).