簡易檢索 / 詳目顯示

研究生: 胡念祖
Hu, Nien-Tsu
論文名稱: 一類未知資料取樣非線性時延系統分散式線性觀測器與追蹤器設計
Decentralized Linear Observer and Tracker Designs for a Class of Unknown Sampled-Data Nonlinear Time-Delay Systems
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 138
中文關鍵詞: 分散式線性觀測器與追蹤器資料取樣非線性時延系統觀測器/卡爾曼濾波器鑑別數位再設計方法觀測器型軌跡追蹤器
外文關鍵詞: Decentralized linear observer and tracker, sampled-data nonlinear time-delay systems, observer/Kalman filter identification, digital redesign approach, observer-based tracker
相關次數: 點閱:288下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對一類未知資料取樣非線性時延系統,提出新的分散式線性觀測器與追蹤器,並具有閉迴路解耦特性。本論文的研究成果涵蓋了兩個主題。首先,本論文提出一種針對一類具有內部連結之未知大尺度資料取樣非線性系統的分散式模型化線性觀測器與軌跡追蹤器設計方法。利用離線的觀測器/卡爾曼濾波器鑑別方法,計算出資料取樣非線性系統之適當階數(或低階)的分散式線性觀測器,並進一步地以數位再設計方法來改善。然後,本論文提出具有高增益特性的分散式數位再設計之軌跡追蹤器設計方法,因此此閉迴路系統具有解耦的特性。本論文第二個主題,針對具有時延效應的系統,本論文利用具有人為的時延輸入與時延輸出的觀測器/卡爾曼濾波器鑑別方法,提出了新的觀測器型軌跡追蹤器。同樣地,利用離線的觀測器/卡爾曼濾波器鑑別方法,計算出資料取樣非線性時延系統之適當階數(或低階)的分散式線性觀測器,並進一步地以本論文提出的數位再設計方法來改善。本論文所提出的針對時延效應的觀測器型軌跡追蹤器,不僅比無時延效應的觀測器型軌跡追蹤器更廣義,同時進一步地提升了某些需要高度表現的控制系統。除此之外,本論文提出的分散式軌跡追蹤器仍保有了高增益特性,並使得閉迴路系統具解耦的性質。在本論文中的每個主題均以說明性的例題來驗證所提方法的有效性。

    The new decentralized linear observer and tracker are proposed in this dissertation for a class of unknown sampled-data nonlinear time-delay systems with closed-loop decoupling property. It covers two topics. First, a new low-order modeling of decentralized linear observer and tracker are proposed for a class of unknown interconnected large-scale sampled-data nonlinear systems. The appropriate (low-) order decentralized linear observer is determined by the off-line observer/Kalman filter identification (OKID) methodology and has been further improved based on the digital redesign approach. Then, the decentralized digital redesign tracker with the high gain property is proposed, so that the closed-loop system has the decoupling property. Secondly, the delay effect is considered in above nonlinear systems for practical control systems. Based on this consideration, the new observer-based tracker via OKID methodology with the artificial delay input and the delay output is proposed. Similarly, the appropriate (low-) order decentralized linear observer determined by the OKID methodology has been further improved based on the proposed digital redesign approach. The proposed observer-based tracker for the time- delay case is of course more general than the observer-based tracker without time delay and significantly improves some controlled systems needed high performance. Besides, the proposed decentralized tracker remains the high gain property and makes the closed-loop system to have the decoupling property. Illustrative examples are given to demonstrate the effectiveness of the proposed scheme in each topic of the dissertation.

    中文摘要 i Abstract iii Dedication v Acknowledgements vi List of Table xi List of Figures xii Notation and Symbols xx List of Acronyms xxi Chapter 1 Introduction 1 1.1 Literature survey and motivation 2 1.1.1 Large-scale system 2 1.1.2 Decentralized control 2 1.1.3 Delay effect 4 1.1.4 System identification 5 1.1.5 Digital redesign approach 6 1.1.6 Motivation of the dissertation 7 1.2 Organization of the dissertation 9 Chapter 2 Prediction-Based Digital Redesign for Sampled-Data Delay-Free Systems 10 2.1 Introduction 11 2.2 Linear quadratic analog tracker and observer designs 12 2.2.1 Linear quadratic analog tracker design 12 2.2.2 Observer-based linear quadratic analog tracker design 14 2.3 Derivation of the observer-based tracker for the sampled-data delay-free system 15 2.3.1 Digital redesign of the linear quadratic analog tracker 15 2.3.2 Digital redesign of the observer-based linear quadratic analog tracker 23 2.4 Summary 26 Chapter 3 Decentralized Control for the Unknown Interconnected Large-Scale Sampled-Data Nonlinear Delay-Free System 28 3.1 Introduction 29 3.2 Problem description 31 3.3 Observer/Kalman filter identification 32 3.3.1 Basic observer equation 32 3.3.2 Computation of observer Markov parameters 36 3.3.2-1 System Markov parameters 36 3.3.2-2 Observer gain Markov parameters 38 3.3.3 Eigensystem realization algorithm 39 3.3.4 Relationship to Kalman filter 42 3.4 Design procedure 43 3.5 Illustrative examples 45 3.5.1 An MIMO large-scale unknown linear system 45 3.5.2 An MIMO large-scale unknown nonlinear system 54 3.6 Summary 67 Chapter 4 Decentralized Control for the Unknown Interconnected Large-Scale Sampled-Data Nonlinear Time-Delay System 69 4.1 Introduction 70 4.2 Problem description and preliminary result 71 4.2.1 Problem description 72 4.2.2 Preliminary result 73 4.3 OKID-based decentralized modeling of the input-output time-delay system via some artificial inputs 74 4.4 Derivation of the new optimal digital tracker and observer for the sampled- data time-delay system 76 4.4.1 The discretizations of continuous-time time-delay system and performance cost function 76 4.4.2 The new optimal digital tracker for the sampled-data time-delay system 89 4.4.3 The new observer-based tracker for the sampled-data time-delay system 92 4.5 An illustrative example 99 4.6 Summary 116 Chapter 5 Conclusions 117 5.1 Conclusions 117 5.2 Future research directions 118 Appendix A Discrete Modeling of Continuous Time-Delay Systems 120 A.1 The derivation of the discrete time-delay model 120 Appendix B The Principal nth Root of a Matrix, the Associated Matrix Sector Function and Block Diagonalization of a System Matrix 124 B.1 The principal nth root of a matrix and the associated matrix sector function 124 B.2 Block diagonalization of a system matrix 128 References 129 Biography 137 Publication List 138

    [1]Andrei, N., Sparse Systems— Digraph Approach of Large-Scale Linear Systems Theory. Verlag TÜV Rheinland, Köln, 1985.
    [2]An der Heiden, U., “Oscillations and chaos in nonlinear delay differential equations with applications to physiology,” Proc. 1st WCNA '92, pp. 3095-3107, 1992.
    [3]Åström, K. J. and Wittenmark, B., Computer-Controlled Systems. Prentice-Hall, Upper Saddle River, NJ, 1997.
    [4]Beddington, J. and May, R. M., “Time lags are not necessarily destabilizing,” Math. Biosci., vol. 27, pp. 109-117, 1975.
    [5]Cooke, K. L. and Grossman, Z., “Discrete delay, distributed delay and stability switches,” J. Math. Anal. Appl., vol. 86, pp. 592-627, 1982.
    [6]Chen, Y. H., Leitmann, G., and Xiong, Z. K., “Robust control design for inter- connected systems with time-varying uncertainties,” Int. J. Contr., vol. 54, pp. 1119-1124, 1991.
    [7]Chen, C. W., Huang, J. K., Phan, M., and Juang, J. N., “Integrated system identification and state estimation for control of large flexible space structures,” J. Guid. Control Dyn., vol. 15(1), pp. 88-95, 1992.
    [8]Chang, W., Park, J. B., Lee, H. J., and Joo, Y. H., “LMI approach to digital redesign of linear time invariant systems,” IEE Proc. Contr. Theory Appl., vol. 149(4), pp. 297-302, 2002.
    [9]Chou, C. H. and Cheng, C. C., “A decentralized model reference adaptive variable structure controller for large-scale time-varying delay systems,” IEEE Trans. Automat. Control, vol. AC-48, pp. 1213-1217, 2003.
    [10]Davison, E. J., “The robust decentralized control of servomechanism problem for composite system with input-output interconnection,” IEEE Trans. Automat. Control, vol. AC-24(2), pp. 325-327, 1979.
    [11]Datta, A. and Ioannou, P. A., “Decentralized indirect adaptive control of inter- connected systems,” Int. J. Adapt. Contr. Signal Process., vol. 5(4), pp. 259-281, 1991.
    [12]Datta, A., “Performance improvement in decentralized adaptive control: A modified model reference scheme,” IEEE Trans. Automat. Control, vol. AC-38(11), pp. 1717-1722, 1993.
    [13]Datko, R., “Time delay perturbations and robust stability,” in Differential Equat- ions, Dynamical Systems, and Control Science, LNM, Dekker: NY, vol. 152, pp. 457-468, 1994.
    [14]Dedieu, H. and Ogorzalek, M. J., “Controlling chaos in Chua’s circuit via sampled inputs,” Int. J. Bifurcation Chaos, vol. 4, pp. 447-455, 1994.
    [15]Davison, E. J. and Aghdam, A. G., Decentralized Control of Large-Scale Systems. Springer Verlag, 2011.
    [16]Freudenberg, J. S. and Looze, D. P., “A sensitivity tradeoff for plants with time delay,” IEEE Trans. Automat. Control, vol. AC-32, pp. 99-104, 1987.
    [17]Fujimoto, H., Kawamura, A., and Tomizuka M., “Generalized digital redesign method for linear feedback system based on N-delay control,” IEEE-ASME Trans. Mech., vol. 4(2), pp. 101-109, 1999.
    [18]Gilbert, E. G., “Controllability and observability in multivariable linear systems,” SIAM J. Control Optim., vol. 1, pp. 128-151, 1963.
    [19]Gavel, D. T. and Seljuk, D. D., “Decentralized adaptive control: structural condit- ions for stability,” IEEE Trans. Automat. Control, vol. AC-34, pp. 413-426, 1989.
    [20]Guo, S. M., Shieh, L. S., Chen, G., and Lin, C. F., “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 47, pp. 1557-1570, 2000.
    [21]Guo, S. M., Wang, W., and Shieh, L. S., “Discretisation of two degree-of-freedom controller and system with state, input and output delays,” IEE Proc. Contr. Theory Appl., vol. 147(1), pp. 87-96, 2000.
    [22]Guo, S. M., Shieh, L. S., Chen, G., Lin, C. F., and Chandra, J., “State-space self- tuning control for nonlinear stochastic and chaotic hybrid system,” Int. J. Bifurcation Chaos, vol. 11, pp. 1079-1113, 2001.
    [23]Huseyin, O., Sezer, M. E., and Siljak, D. D., “Robust decentralized control using output feedback,” IEE Proc. D - Contr. Theory Appl., vol. 129, pp. 310-314, 1982.
    [24]Hale, J. K. and Huang, W., “Global geometry of the stable regions for two delay differential equations,” J. Math. Anal. Appl., vol. 178, pp. 344-362, 1993.
    [25]Hale, J. K., “Effects of delays on stability and control,” ReportCDSN97-270, GeorgiaTech, 1997.
    [26]Hou, M., Zitek, P., and Patton, R. J., “An observer design for linear time-delay systems,” IEEE Trans. Automat. Control, vol. AC-47, pp. 121-125, 2002.
    [27]Hua, C. C., Guan, X. P., and Shi, P., “Robust backstepping control for a class of time delayed systems,” IEEE Trans. Automat. Control, vol. AC-50, pp. 894-899, 2005.
    [28]Ikeda, K. and Shin, S., “Fault tolerant decentralized control systems using back- stepping,” in Proc. of the Decision and Control Conference, New Orleans, LA, pp. 2340-2345, Dec. 14-16, 1995.
    [29]Ioannou, P. A. and Sun, J., Robust Adaptive Control. Prentice Hall, New Jersey, 1996.
    [30]Jamshidi, M., Large-Scale System: Modeling and Control. Elserier Science Publishing, New York, 1983.
    [31]Juang, J. N. and Pappa, R. S., “A comparative overview of modal testing and system identification for control of structures,” Shock Vib. vol. 20(5), pp. 4-15, 1988.
    [32]Juang, J. N., Horta, L. G., and Longman, R. W., “Input/Output system ident- ification: learning from repeated experiments,” AIAA Monograph on Progress in Astronautics and Aeronautics, vol. 29, pp. 87-99, 1990.
    [33]Juang, J. N., Horta, L. G., Belvin, W. K., Sharkey, J., and Bauer, F. H., “An application of the observer/Kalman filter identification (OKID) technique to Hubble flight data,” NASA/DoD Controls-Structures Interaction Technology Conference, Lake Tahoe, Nevada, March 3-5, 1992.
    [34]Juang, J. N., Applied System Identification. Prentice-Hall, Englewood Cliffs, NJ, 1994.
    [35]Jain, S. and Khorrami, F., “Decentralized adaptive output feedback design for large-scale nonlinear systems,” IEEE Trans. Automat. Control, vol. AC-42, pp. 729-735, 1997.
    [36]Jiang, Z. P., “Decentralized and adaptive nonlinear tracking of large-scale systems via output feedback,” IEEE Trans. Automat. Control, vol. AC-45, pp. 2122-2128, 2000.
    [37]Jiang, Z. P., Repperger, D., and Hill, D. J., “Decentralized nonlinear output- feedback stabilization with disturbance attenuation,” IEEE Trans. Automat. Control, vol. AC-46, pp. 1623-1629, 2001.
    [38]Jiao, X. and Shen, T., “Adaptive feedback control of nonlinear time delay systems the lasalle-razumikhin-based approach,” IEEE Trans. Automat. Control, vol. AC- 50, pp. 1909-1913, 2005.
    [39]Kuo, B. C., Digital Control Systems. Holt, Rinehart and Winston, New York, 1980.
    [40]Kolmanovskii, V. B. and Myshkis, A. D., Applied theory of functional differential equations. Kluwer, 1992.
    [41]Krstic, M., Kanellakopoulos, I., and Kokotovic, P. V., Nonlinear and Adaptive Control Design. John Wiley & Sons, New York, 1995.
    [42]Kolmanovskii, V. B., Niculescu, S. L., and Gu, K., “Delay effects on stability: a survey,” in Proc. 38th IEEE Conf. Decision Control, Phoenix, USA, pp. 1993-1998, 1999.
    [43]Lunze, J., Robust Multivariate Feedback Control. Akademie-Verlag, Berlin, 1988.
    [44]Lewis, F. L. and Syrmos, V. L., Optimal Control. John Wiley and Sons, New York, 1995.
    [45]Leyva-Ramos, J. and Pearson, A. E., “An asymptotic modal observer for linear autonomous time lag systems,” IEEE Trans. Automat. Control, vol. AC-40, pp. 1291-1294, 1995.
    [46]Logemann, H., Rebarber, R., and Weiss, G., “Conditions for robustness and non- robustness of the stability of feedback systems with small delays in the feedback loops,” SIAM J. Control Optim., vol. 34, pp. 572-600, 1996.
    [47]Lee, H. J., Park, J. B., and Joo, Y. H., “An efficient observer-based sampled-data control: digital redesign approach,” IEEE Trans. Circuits Syst. I Fundam. Theory Appl., vol. 50(12), pp. 1595-1601, 2003.
    [48]Lee, H. J., Park, J. B., and Joo, Y. H., “Further refinement on LMI-based digital redesign: delta-operator approach,” IEEE Trans. Circuits Syst. II Express Briefs. vol. 53(6), pp. 473-477, 2006.
    [49]Lee, H. J., Shieh L. S., and Kim, D. W., “Digital control of nonlinear systems: optimal linearization- based digital redesign approach,” IET Contr. Theory Appl., vol. 2(4), pp. 337-351, 2008.
    [50]Marino, R. and Tomei, P., Nonlinear Control Design: Geometric, Adaptive and Robust. Prentice-Hall, London, 1995.
    [51]Meinsma, G., Fu, M., and Iwasaki, T., “Robustness of the stability of feedback systems with respect to small time delays,” Syst. Control Lett., vol. 36, pp. 131-134, 1996.
    [52]Narendra, K. S. and Annaswamy, A. M., Stable Adaptive Systems. Prentice-Hall, Upper Saddle River, New Jersey, 1989.
    [53]Narendra, K. S. and Oleng’, N. O., “Exact output tracking in decentralized adaptive control systems,” Center for Systems Science, Yale University, New Haven, CT, Tech. Rep. 0104, 2001.
    [54]Niculescu, S. L., Delay Effects on Stability: A Robust Control Approach. Springer- Verlag, London, UK , 2001.
    [55]Ogata, K., Discrete-Time Control Systems. Prentice-Hall, Englewood Cliffs, NJ, 1987.
    [56]Ortega, R. and Herrera, A., “A solution to the decentralized adaptive stabilization problem,” Syst. Control Lett., vol. 20, pp. 299-306, 1993.
    [57]Pappa, R. S. and Juang, J. N., “Some experiences with the eigensystem realization algorithm,” Sound Vib. vol. 22(1), pp. 30-35, 1988.
    [58]Phan, M., Juang, J. N., and Longman, R. W., “Identification of linear multivariable systems by identification of observers with assigned real eigenvalues,” J. Astronaut. Sci., vol. 40(2), pp. 261-279, 1992.
    [59]Phan, M., Horta, L. G., Juang, J. N., and Longman, R. W., “Linear system identifi- cation via an asymptotically stable observer,” J. Optim. Theory Appl., vol. 79(1), pp. 59-86, 1993.
    [60]Pyragas, K., “Control of chaos via extended delay feedback,” in Physics Lett. A, vol. 206, pp. 323-330, 1995.
    [61]Pagilla, P. R., “Robust decentralized control of large-scale interconnected systems: General interconnections,” in Proc. of the American Control Conference, San Diego, CA, pp. 4527-4531, June 2-4, 1999.
    [62]Ralston, A., A First Course in Numerical Analysis. McGraw-Hill, New York, 1965.
    [63]Šiljak, D. D., Large Scale Dynamic Systems: Stability and Structure. North- Holland, New York, 1978.
    [64]Sandell, N. R., Jr., Varaiya, P., Athans, M., and Safonov, M. G., “Survey of decentralized control methods for large scale systems,” IEEE Trans. Automat. Control, vol. AC-23(2), pp. 108-128, 1978.
    [65]Singh, M. G., Decentralised Control. North-Holland, Amsterdam, 1981.
    [66]Shieh, L. S. and Tsay, Y. T., “Transformations of a class of multivariable control system to block companion forms,” IEEE Trans. Automat. Control, vol. AC-27, pp. 199-203, 1982.
    [67]Shieh, L. S., Tsay, Y. T., and Wang, C. T., “Matrix sector functions and their applications to system theory,” IEE Proc. D - Contr. Theory Appl., vol. 131, pp. 171-181, 1984.
    [68]Shieh, L. S., Tsai, J. S. H., and Lian, S. R., “Determining continuous-time state equations from discrete-time state equations via the principal qth root method,” IEEE Trans. Automat. Control, vol. AC-31, pp. 454-457, 1986.
    [69]Shieh, L. S., Dib, H. M., and Ganesan, S., “Linear quadratic regulators with eigenvalue placement in a specified region,” Automatica, vol. 24, pp. 819-823, 1988.
    [70]Shieh, L. S., Zhao, X. M., and Zhang, J. L., “Locally optimal digital redesign of continuous-time system,” IEEE Trans. Ind. Electron., vol. 36, pp. 511-515, 1989.
    [71]Shieh, L. S., Zhang, J. L., and Coleman, N. P., “Optimal digital redesign of continuous-time controllers,” Comput. Math. Appl., vol. 22, pp. 25-35, 1991.
    [72]Scott, M., Gilbert, M., and Demeo, M., “Active vibration damping of the space shuttle remote manipulator system,” Proceedings of the AIAA Guidance, Navigation and Control Conference, New Orleans, Louisiana, August 1991.
    [73]Shieh, L. S., Zhang, J. L., and Sunkel, J. W., “A new approach to the digital redesign of continuous-time controllers,” IEE Proc. D - Contr. Theory Appl., vol. 8, pp. 37-57, 1992.
    [74]Shieh, L. S., Chen, G., and Tsai, J. S. H., “Hybrid suboptimal control of multi-rate multi-loop sampled-data systems,” Int. J. Syst. Sci., vol. 23, pp. 839-854, 1992.
    [75]Shi, L. and Singh, S. K., “Decentralized adaptive controller design of large-scale systems with higher order interconnections,” IEEE Trans. Automat. Control, vol. AC-37, pp. 1106-1118, 1992.
    [76]Shieh, L. S., Wang, W. M., and Appu Panicker, M. K., “Design of PAM and PWM digital controller for cascaded analog system,” ISA Trans., vol. 37, pp. 201-213, 1998.
    [77]Shieh, L. S., Guo, S. M., Chen, G., and Ortega, M., “Ordering chaos in Chua’s system: A sampled-data feedback and digital redesign approach,” Int. J. Bifurcation Chaos, vol. 10, pp. 2221-2231, 2000.
    [78]Tsai, J. S. H., Shieh, L. S., and Yates, R. E., “Fast and stable algorithms for computing the principal nth root of a complex matrix and the matrix sector function,” Comput. Math. Appl., vol. 15(11), pp. 903-913, 1988.
    [79]Tsai, J. S. H., Shieh, L. S., Zhang, J. L., and Coleman, N. P., “Digital redesign of pseudo-continuous-time suboptimal regulators for large-scale discrete system,” IEE Proc. D - Contr. Theory Appl., vol. 5, pp. 37-65, 1989.
    [80]Tsai, J. S. H., Chen, C. M., and Shieh, L. S., “Digital redesign of the cascaded continuous-time controller: time-domain approach,” IEE Proc. D - Contr. Theory Appl., vol. 17, pp. 643- 661, 1991.
    [81]Watanabe, K. and Ouchi, T., “An observer of systems with delays in the state variables,” Int. J. Contr., vol. 41, pp. 217-229, 1985.
    [82]Wu, H. S., “Decentralized robust control for a class of large-scale interconnected systems with uncertainties,” Int. J. Syst. Sci., vol. 20(12), pp. 2597-2608, 1989.
    [83]Wen, C., “Direct decentralized adaptive control of interconnected systems having arbitrary subsystem relative degrees,” in Proc. of the Decision and Control Conference, Lake Buena Vista, FL, pp. 1187-1192, Dec. 14-16, 1994.
    [84]Wen, C., “Indirect robust totally decentralized adaptive control of continuous-time interconnected systems,” IEEE Trans. Automat. Control, vol. AC-38(6), pp. 1122-1126, 1995.
    [85]Wang, W. M., Guo, S. M., and Shieh, L. S., “Discretization of cascaded continuous- time condolers for state and input delayed systems,” Int. J. Syst. Sci., vol. 31, pp. 287-296, 2000.
    [86]Wu, Hansheng., “Decentralized adaptive robust control for a class of large-scale systems including delayed state perturbations in the interconnections,” IEEE Trans. Automat. Control, vol. AC-47, pp. 1745-1751, 2002.
    [87]Wang, H. P., Shieh, L. S., Tsai, J. S. H., and Zhang, Y., “Optimal digital controller and observer design for multiple time-delay transfer function matrices with multiple input-output time delays,” Int. J. Syst. Sci., vol. 39, pp. 461-476, 2008.
    [88]Xu, J., Shieh, L. S., and Chen, G., “Digital redesign of the chaotic Chua’s circuit,” IEEE Trans. Aerosp. Electron. Syst., vol. 32, pp. 1488-1499, 1996.
    [89]Yang, T. and Chua, L. O., “Control of chaos using sampled-data feedback control,” Int. J. Bifurcation Chaos, vol. 8, pp. 2433-2438, 1998.
    [90]Ye, X. and Huang, J., “Decentralized adaptive output regulation for a class of large- scale nonlinear systems,” IEEE Trans. Automat. Control, vol. AC-48, pp. 276-281, 2003.
    [91]Zheng, F., Wang, Q. G., and Lee, T. H., “On the design of multivariable PID controllers via LMI approach,” Automatica, vol. 38, pp. 517-526, 2002.

    無法下載圖示 校內:2011-12-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE