簡易檢索 / 詳目顯示

研究生: 謝明君
Hsieh, Ming-Chun
論文名稱: 微機電技術應用在感測器與高頻電感器之研究
The Study of Micro-Electro-Mechanical System (MEMS) Technology for Sensor and RF Inductor Applications
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 139
中文關鍵詞: 紅外光檢測器剪應力感測器微機電
外文關鍵詞: piezoresistive shear-stress sensor, Micro-electro-mechanical system technology
相關次數: 點閱:103下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文探討應用微機電系統製程技術研製各種感測器與高頻電感器之特性,並對其製程技術做最佳化的調整。所研究的感測器包括微型接觸式剪應力感測器、輻射熱型紅外光檢測器及高頻電感元件。
      對於微型接觸式剪應力感測器的研究,吾人以單晶矽為材料,且採用單一個有四端接線、對剪應力靈敏之壓電阻應變規來取代最普遍之惠斯頓橋式結構。設計主要之考量在於壓力靈敏度與靈敏度之溫度係數,而設計步驟分為正方形平膜邊長之設定、平膜厚度之決定、摻雜應變規尺寸之限定、絕緣層厚度之選擇、絕緣層形成方法、摻雜應變規之方位及摻質濃度之抉擇,過程中利用有限元素法來分析應力以供設計參考。
      其次,吾人利用以快速昇溫化學氣相沈積成長單晶SiGeC之技術,並以此作為元件熱敏電阻,研製測輻射熱型紅外光檢測器,且利用微機電系統製程技術研製具有熱阻隔作用的懸橋結構,提高元件之熱絕緣性,並使元件主體薄膜化程度增大,以提高了熱型感測器的感度和響應速度,此外吾人還利用電腦模擬軟體ANSYS找出元件微結構之最佳化設計,諸如元件大小、抗壓性、熱絕緣性之模擬,開發完成此元件並探討其特性。
      最後吾人研製高品質參數之晶片式螺旋型電感元件設計。首先利用微機電系統製程技術去除包圍晶片電感的介電材料,使得從晶片電感到矽基板的能量損失降低,進而增加晶片電感的參數品質。並進一步以有限元素分析法模擬螺旋型電感結構所能承受之最大外力和其螺旋圈數、與各種不同支撐結構間的關係,以及散熱問題等。此外更將吾人所研製之平面螺旋型電感元件與一些不同電感結構﹔如方型螺線管、鋸齒型螺線管與堆疊螺旋型等結構電感的機械特性與最大容許電流做一分析與比較。

      In this dissertation, we report the study of Micro-electro-mechanical system (MEMS) technology for sensors, including, shear-stress sensor, far infrared sensor and RF inductor applications. The Finite Element Method (FEM) package ANSYS has been employed for the thermal isolation, stress distribution, impact force and temperature distribution analysis.
      Firstly, we study the preparation of prototype contact type micro piezoresistive shear-stress sensor that can be utilized to measure the shear stress between skin of stump and socket of Above-Knee (AK) prosthesis. MEMS technology has been chosen for the design because of the low cost, small size and adaptability to this application. The Finite Element Method (FEM) package ANSYS has been employed for the stress analysis of the micro shear-stress sensors. The sensor contains two transducers that will transform the stresses into an output voltage. The piezoresistive strain gauges were implanted with boron ions. Static characteristics of the shear sensor were determined through a series of calibration tests. In addition, the results simulated by FEM are validated by comparison with experimental investigations.
      Next, we report the design, fabrication and performance of a novel crystal SiGeC infrared sensor with wavelength 8-14mm for portable far infrared ray (FIR) in rehabilitation system application. The operation principle of the sensor is based on the change of thermistor’s resistance under the irradiation FIR light. The thermistor in the IR detector is made of Si0.68Ge0.31C0.01 thin films for its large activation energy and the temperature coefficient. Finite Element Method (FEM) package ANSYS has been employed for analyze of the thermal isolation and stress distribution in the IR detector. In addition, a comparison between the detectors both with and without the micro-bridge structure has been made in order to verify the improvement of the thermal isolation and lowering of the thermal conductance owing to the micro-bridge structure. The complete process and measured thermal conductance, thermal time constant and the heat capacity of developed FIR sensor have been described in detail.
      Finally, we study the design, fabrication and comparison various geometry of deep sub-micron high Q suspended spiral on chip inductors. In the design, finite element program, ANSYS, were used for electrical-characteristics, maximum endurable impact force and thermal conduction simulations, respectively. Based on the design, suspended 10-turns spiral inductor with different air cavity structures, i.e., diamond opening, circle opening, triangle opening and full suspended with pillar supports were developed for different applications. Among these structures, the suspended inductor with pillar support possesses the highest Qmax (maximum of quality factor) of 6.6 at 2 GHz, the least effective dielectric constant of 1.06, and the lowest endurable impact force 0.184 Newton. On the other hand, the spiral inductor with diamond opening has a lowest Qmax of 4.3, the largest effective dielectric constant of 3.44 and highest endurable impact force 4 Newton. The former is suitable for station telecommunication applications in which the mechanical vibration is not a serious concern, while the latter can be used for mobile telecommunication applications subject to strong mechanical vibrations. Additionally, the conventional on-chip spiral inductor embraced by SiO2 with a dielectric constant of 4 was prepared for comparison and found its Qmax is 3.8 at 1.2 GHz.
      Moreover, the impact force, the maximum allowable operating current of inductors with various structures, including planar spiral inductor, square solenoid inductor, inclined solenoid inductor, and stacked spiral inductors have been simulated and compared.

    中文摘要 英文摘要(Abstract) 各章中文提要 誌謝 目錄 Table Captions Figure Captions Chapter 1 Introduction 1-1 Background 1 1-2 Preface of this dissertation Chapter 2 Design and Fabrication of A Contact Type Piezoresistive Micro- Shear Stress Sensor with MEMS Technology 2-1 Background and motivation 9 2-2 Sensor design and fabrication 12 2-3 Experimental results and discussions 19 2-4 Summary 22 Chapter 3 Design and Fabrication of A Novel Crystal SiGeC Far Infrared Sensor with MEMS Technology 3-1 Introduction 23 3-2 The improvement of thermal isolation with micro- bridge structures 25 3-3 Sensor design and fabrication 27 3-4 Experimental results and discussion 28 3-5 Summary 32 Chapter 4 Design, Fabrication, and Comparison of Suspended High-Q Spiral Inductors with MEMS Technology 4-1 Introduction 34 4-2 The design, fabrication and characteristic of the suspended inductors 4-2-1 The design of on-chip spiral inductors 36 4-2-2 The fabrication of on-chip spiral inductors 40 4-2-3 Other structure suspended inductors 41 4-3 Results, discussions and comparison 42 4-4 Summary 45 Chapter 5 Conclusions and Prospects 5-1 Conclusions 47 5-2 Prospects 49 Reference 52 Tables Figures Appendix A Author’s Resume Appendix B Author’s Related Publication

    [1] http://www.memsnet.org/material/
    [2] J.E. Sanders, C.H. Daly, “Normal and shear stresses on a residual limb in a prosthetic socket during ambulation: Comparison of finite element results with experimental measurements,” J Rehab Res Dev 30(2) 191-204, 1993.
    [3] G.E. Reiber, “Who is at Risk of Limb Loss and What to do about it?” J Rehab Res Dev 31(4) 357-362, 1994.
    [4] J.B. Huang, S. Tung, C.M. Ho, C. Liu and Y.C. Tai, “ Improved Micro Thermal Shear-Stress Sensor,” IEEE Transactions on Instrumentation and Measurement, vol. 45, no. 2, pp. 570-574, 1996.
    [5] A. Padmanabhan, M. Sheplak, K.S. Breuer and M.A. Schmidt, “Micromachined Sensors for Static and Dynamic Shear -Stress Measurements in Aerodynamic Flows,” 1997 International conference on Solid-State Sensors and Actuators, Chicago, June 16-19,1997.
    [6] A.M. Lebar, G.F. Harris, J.J. Wertsch and H. Zhu, “An Optoelectric Plantar Shear Sensing Transducer: Design, Validation, and Preliminary Subject Tests,” IEEE Transactions on Rehabilitation Engineering, vol.4, no.4, December 1996.
    [7] T. Pan, D. Hyman, M. Mehregany, E. Reshotko and S. Garverick, “Microfabricated Shear Stress Sensors, Part 1: Design and Fabrication,” AIAA Journal, vol.37,no.1, pp. 66-72, January, 1999.
    [8] M.C. Hsieh, Y.K. Fang, M.S. Ju, G.S. Chen, J.J. Ho, C.H. Yang, P.M. Wu, C.S. Wu and T.Y. Chen “A Contact Type Piezoresistive Micro-Shear Sensor For Above - Knee Prosthesis Application” IEEE Journal of Microelectromechnical Systems, Vol. 10, No. 1, pp. 121-127, March, 2001.
    [9] Ise N, Katsuura T, Kikuchi Y, Miwa E, “Effect of far-infrared radiation on forearm skin blood flow,” Ann Physiol Anthropol, Jan 1987,6(1), pp.31-32.
    [10] M.C. Hsieh, Y.K. Fang, P.M. Wu and W.D. Wang, “Crystal SiGeC far infrared sensor with temperature isolation improvement structure”, Electronics letters, volume 39; No. 8, 17th, April 2003, pp.656-658.
    [11] S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, “IR bolometers made of polycrystalline silicon germanium,” Sens. Actuators A, vol. 66, no.1-3, pp.193-199, Apr. 1998.
    [12] J.L. Regolini, F. Gisbert, G. Dollino, and P. Boucaud, “Growth and characterization of strain compensated Si1-x-yGexCy epitaxial layers,” Mater. Lett., vol. 18, pp. 57, Nov. 1993.
    [13] M.C. Hsieh, Y.K. Fang, P.M. Wu, C.C. Yang, Y.C Lin, W.D. Wang. S.F. Ting and J.J. Ho “Design and farabrication of a novel crystal SiGeC far infrared sensor with wavelength 8-14 micrometer”, Sensors Journal IEEE, volume2; Issue: 4, pp.360-365. August 2002,
    [14] M. Park, S. Lee, C. S. Kim, H. K. Yu, and K. S. Nam, “The detailed analysis of high CMOS-compatible microwave spiral inductors in silicon technology,” IEEE Trans. Electron Devices, vol. 45, pp. 1953-1959, Sept. 1998.
    [15] B.H. Cho, J.H. Lee, Y.H. Bae, C.S. Cho and J.H. Lee, “Fabrication of Micro-Inductor and Capacitor For RF MEMS Applications,” Journal of Semiconductor Technology and Science, vol. 2, N O. 2, pp. 102-110, June.2002.
    [16] M.C. Hsieh, Y.K. Fang, C.H. Chen, S.M. Chen, and W.K. Yeh. “Design and Fabrication of Deep Sub-Micron CMOS Technology Compatible Suspended High-Q Spiral Inductors”, IEEE Transaction on Electron Devices, Vol. 51, No. 3, pp.324-331, 2004.
    [17] J.E. Sanders, C.H. Daly, “Normal and shear stresses on a residual limb in a prosthetic socket during ambulation: Comparison of finite element results with experimental measurements,” J Rehab Res Dev 30(2) 191-204,1993.
    [18] G.E. Reiber, “Who is at Risk of Limb Loss and What to do about it?” J Rehab Res Dev 31(4) 357-362,1994.
    [19] J.B. Huang, S. Tung, C.M Ho, C. Liu and Y.C. Tai, “Improved Micro Thermal Shear-Stress Sensor,” IEEE Transactions on Instrumentation and Measurement, vol. 45, no. 2, pp. 570-574, 1996.
    [20] A. Padmanabhan, M. Sheplak, K.S. Breuer and M.A. Schmidt, “Micromachined Sensors for Static and Dynamic Shear -Stress Measurements in Aerodynamic Flows,” 1997 International conference on Solid-State Sensors and Actuators, Chicago, June 16-19,1997.
    [21] A.M. Lebar, G.F. Harris, J.J. Wertsch and H. Zhu, “An Optoelectric Plantar Shear Sensing Transducer: Design, Validation, and Preliminary Subject Tests,” IEEE Transactions on Rehabilitation Engineering, vol.4, no.4, December 1996.
    [22] Tao Pan, Daniel Hyman, M. Mehregany, Eli Reshotko and Steven Garverick, “Microfabricated Shear Stress Sensors, Part 1: Design and Fabrication,” AIAA Journal, vol.37,no.1, pp. 66-72, January, 1999.
    [23] M. Lord, R. Hosein, and R.B. Williams, “Method for in-shoe shear stress measurement,” J. Biomed. Eng., vol.14,no.3,pp.181-186,1992.
    [24] J.E. Gragg, W.E. McCulley, W.B. Newton and C.E. Derrington, “Compensation and Calibration of a Monolithic four Terminals Silicon Pressure Transducers,” Tech Digest IEEE Solid-state sensor Workshop, Hilton Head Island, SC, USA, pp.21-27, 1984.
    [25] Kurt E. Petersen, “Silicon as a Mechanical Material,” Proc. IEEE, vol. 70, no. 5, pp. 420-457, May 1982.
    [26] O.N. Tutte, P.W. Chapman, and D. Long, “Silicon Diffused Element Piezoresistive Diaphragm,” J. Appl. Phys., vol.33, pp.3322-3327, Nov.1962.
    [27] Y. Kanda, “A Graphical Representation of the Piezoresistance Coefficients in Silicon,” IEEE Transactions on Electron Devices, vol. ED-29, no.1, January 1982.
    [28] A.C. Ugural, Mechanics of Materials, McGraw-Hill, New York, Chap.4, 1991.
    [29] S.M. Sze, Semiconductor Sensors, John Wiley & Sons, INC., New York, pp. 180, 1994.
    [30] M.C. Hsieh, Y.K. Fang, M.S. Ju, G.S. Chen, J.J. Ho, C.H. Yang, P.M. Wu, C.S. Wu and T.Y. Chen, “A Contact Type Piezoresistive Micro-Shear Sensor For Above - Knee Prosthesis Application” IEEE Journal of Microelectromechnical Systems, Vol. 10, No. 1, pp. 121-127, March, 2001
    [31] Ise N, Katsuura T, Kikuchi Y, Miwa E, “Effect of far-infrared radiation on forearm skin blood flow,” Ann Physiol Anthropol, Jan 1987,6(1), pp.31-32.
    [32] Ogita S, Imanaka M, Matsuo S, Takebayashi T, Nakai Y, Fukumasu H, Matsumoto M, Iwanaga K, “Effects of far-infrared radiation on lactation,” Ann Physiol Anthropol, Apr 1990,9(2), pp.83-91.
    [33] H. Jerominek, F. Picard, N. Swart, M. Renaud, M. Levesque, M. Lehoux, J. Sebastien, M. Pelletier, G. Bilodeau, D. Audet, T. Pope, and P. Lambert, “Micromachined, uncooled, VO2-based IR bolometer arrays,” SPIE Aerosense, Orlando, FL, vol.2746, pp.60, Apr. 1996.
    [34] J. Shie, Y. Chen, M. Ou-Yang, and B. Chou, “ Characterization and modeling of metal-film microbolometers,” J. Microelectromech. Syst., vol.5, pp.298, Dec.1996.
    [35] M.H. Unewisse, B.I. Craige, R.J. Watson, O. Reinhold, and K. C. Liddiard, “The growth and properties of semiconductor bolometers for infrared detection,” SPIE, vol.2554, no.43, pp.43, 1995.
    [36] S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, “IR bolometers made of polycrystalline silicon germanium,” Sens. Actuators A, vol. 66, no.1-3, pp.193-199, Apr. 1998.
    [37] J. L. Regolini, F. Gisbert, G. Dollino, and P. Boucaud, “Growth and characterization of strain compensated Si1-x-yGexCy epitaxial layers,” Mater. Lett. , vol. 18, pp. 57, Nov. 1993.
    [38] F. Ericson, and J.A. Schweitz, “Micromechanic Fracture Strength of Silicon,” J. Appl. Physics, vol.68, no.11, Dec. 1990, pp.5840~5844.
    [39] A. D. Parsons, D.J. Pedder, “Thin-film infrared absorber structures for a dvanced thermal detectors,” J. Vac. Sci. Technol. A6, pp.1686-1689, 1988
    [40] D. Lienhard, F. Heepmann, and B. Ploss, “Thin Nickel Filma as Absorbers in Pyroelectric Sensor Arrays,” Microelectronic Engineering, vol. 29, pp.101-104, 1995.
    [41] W.T. Hsieh, Y.K. Fang, S.F. Ting, Y.S. Tsair, W.J. Lee, and H.P. Wang, “Improving High Temperature Characteristic of SiGeC/Si Hetrojunction Diode with Propane Carbon Source,” Solid State Electronics, vol., pp.,2002
    [42] P. Warren, M. Dutoit, P. Boucaud, J. –M Lourtioz, and F. H. Julien, “RTCVD growth and characterization of SiGeC multi-quantum well,” Thin Solid Films 294, pp. 125-128, 1997
    [43] M.C. Hsieh, Y.K. Fang, P.M. Wu, C.C. Yang, Y.C Lin, W.D. Wang. S.F. Ting and J.J. Ho “Design and farabrication of a novel crystal SiGeC far infrared sensor with wavelength 8-14 micrometer”, Sensors Journal IEEE, volume2; Issue:4, August 2002, pp.360-365
    [44] M.C. Hsieh, Y.K. Fang, P.M. Wu and W.D. Wang, “Crystal SiGeC far infrared sensor with temperature isolation improvement structure”, Electronics letters, volume 39; No. 8, 17th, April 2003, pp.656-658.
    [45] K.C. Liddiard, “Thin Film Resistance Bolometer IR Detectors,” Infrared Phys, vol. 24,pp.57, 1984.
    [46] M. Park, S. Lee, C. S. Kim, H. K. Yu, and K. S. Nam, “The detailed analysis of high CMOS-compatible microwave spiral inductors in silicon technology,” IEEE Trans. Electron Devices, vol. 45, pp. 1953-1959, Sept. 1998.
    [47] B.H. Cho, J.H. Lee, Y.H. Bae, C.S. Cho and J.H. Lee, “Fabrication of Micro-Inductor and Capacitor For RF MEMS Applications,” Journal of Semiconductor Technology and Science, vol. 2, N O. 2, pp. 102-110, June.2002.
    [48] A. M. Niknejad and R. G. Meyer, “Analysis, design, and optimization of spiral inductors and transformers for Si RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, pp. 1470-1481, Oct. 1998.
    [49] K. B. Ashby, A. Koullias, W. C. Finley, J. J. Bastek, and S. Moinian,”High Q inductors for wireless applications in a complementary silicon Bipolar process,” IEEE J. Solid-State Circuits, vol. 31, pp. 4-9, Jan.1996.
    [50] M. Park, S. Lee, C. S. Kim, H. K. Yu, and K. S. Nam, “The detailed analysis of high CMOS-compatible microwave spiral inductors in silicon technology,” IEEE Trans. Electron Devices, vol. 45, pp. 1953-1959, Sept. 1998.
    [51] J. Chuang, S. Ghazaly, N. Zein, G. Maracas, and H. Gronkin, “Low loss air-gap spiral inductors for MMICs using glass microbump bonding techniques,” IEEE MTT-S International Microwave Symposium Digest, vol.2, pp. 131-133, 1998.
    [52] Y. Sun, H. van Zeijl, J. L. Tauritz, R. G. F. Baets, “Suspended Membrane Inductors and Capacitors for Application in Silicon MMIC’S,” IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, pp. 99-102, 1996.
    [53] Jae Y. Park, and Mark G. Allen, “High Q Spiral-Type Microinductors on Silicon Substrates,” IEEE Transactions on Magnetics, vol. 35, No. 5, pp. 3544-3546, Sept. 1999.
    [54] J. Y.-C. Chang, A. A. Abidi, and M. Gaitan, “Large suspended inductor on silicon and their use in a 2-μm CMOS RF amplifier,” IEEE Electron Device Letter, vol. 14, No. 5, pp. 246-248, May 1993.
    [55] Tony Yeung, Alan Pun, Zhiheng Chen, Jack Lau, and Francois J.R. Clement, “Noise coupling in heavily and lightly doped substrate from planar spiral inductor,” IEEE International Symposium on Circuits and Systems, pp.1405-1408, 1997.
    [56] R.P. Ribas, J. L. Leclercq, J.M. Karam and F. Ndagijimana, “Monolithic Micromachined Planar Spiral Transformer,” IEEE Transactions on Microwave Theory and Techniques, vol.48, No. 8, pp. 1326-1334, Aug, 2000.
    [57] C. H. Chen, “The studies of High Performance Passive Devices with CMOS Compatible Technology for High Voltage and RF System Applications,” June, 2003.
    [58] M.C. Hsieh, Y.K. Fang, C.H. Chen, S.M. Chen, and W.K. Yeh. “Design and Fabrication of Deep Sub-Micron CMOS Technology Compatible Suspended High-Q Spiral Inductors”, IEEE Transaction on Electron Devices, vol. 51, No. 3, pp.324-331,2004
    [59] D. Hisamoto, S. Tanaka, T. Tanimoto, S. ichiro Kimura, “Suspended SOI Structure for Advanced 0.1-mm CMOS RF Devices,” IEEE Transactions on Electron Devices, vol.45, No. 5, pp. 1039-1046, May 1998.
    [60] J.B. Yoon, B.K. Kim, C.H. Han, E.Yoon, and C.K. Kim, “Surface Micromachined Solenoid On-Si and On-Glass Inductors for RF Applications,” IEEE Electron Device Letter, vol. 20, No.9, pp. 487-489, September 1999.
    [61] S. Seok, C. Nam, W. Choi, and K. Chun, “A High Performance Solenoid-Type MEMS Inductor,” Journal of Semiconductor Technology and Science, vol. 1, No. 3, pp. 182-188, September 2001.
    [62] A. Zolfaghari, A. Chan, and B. Razavi, “Stacked Inductors and Transformers in CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 36, no. 4, pp.620-628, April 2001.
    [63] M. Lord, R. Hosein and R.B. Williams, “Method for in-shoe shear stress measurement” J. Biomed. Eng, vol. 14, pp. 181-186, May, 1992
    [64] M.C. Hsieh, Y.K. Fang, M.S. Ju, G.S. Chen, J.J. Ho, C.H. Yang, P.M. Wu, C.S. Wu and T.Y. Chen, “A Contact Type Piezoresistive Micro-Shear Sensor For Above - Knee Prosthesis Application” IEEE Journal of Microelectromechnical Systems, Vol. 10, No.1, pp. 121-127, March, 2001
    [65] Fredric M. Ham, “Determination of Glucose Concentrations in an Aqueous Matrix from NIR Spectra Using Optiamal Time-Domain Filtering and Partial Least-Squares Regression”, IEEE Transactions on Biomedical Engineering, vol.44, No. 6, June, 1997.
    [66] Tokuo Ogawa, “Dynamic sweating response of man to infrared irradiation in various spectral regions”, Int J Biometeorol, vol.35, pp. 18-23, 1991

    下載圖示 校內:2005-07-13公開
    校外:2006-07-13公開
    QR CODE