| 研究生: |
徐皓涵 Hsu, Hao-han |
|---|---|
| 論文名稱: |
適用在非線性系統之核心回歸模型之最佳化控制 Optimal Control of Nonlinear Systems Using Generalized Kernel Models |
| 指導教授: |
蔡聖鴻
Tsai, J.H. Jason |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 最佳化控制 、核心回歸模型 |
| 外文關鍵詞: | optimal control, kernel model |
| 相關次數: | 點閱:62 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一針對非線性系統的最佳化控制法。透過最佳化線性法則,我們可以利用核回歸模型來建構出非線性隨機狀態最佳化控制系統。此外,我們利用進化演算法取代傳統的方法來挑選適當的特徵值向量,以建構出更理想的核回歸模型。本文提出的方法使得非線性數位系統的進階數位控制演算法更具發展性。
An optimal controller for nonlinear system identified by generalized kernel model is proposed in this thesis. EP algorithm is used to tune the elements of the diagonal covariance matrix for the kernel regressors. By applying EP algorithm on the kernel model, the error between regressors and the actual nonlinear system could be minimized and the terms of the regrssors could be reduced as well. By applying the optimal linearization approach, a generalized kernel model with estimated states for nonlinear continuous–time stochastic systems can be constructed for the optimal control. The proposed method enables development of digitally implement advanced control algorithm for nonlinear stochastic hybrid systems.
[1] V. Vapnik, The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
[2] V.Vapnik, S. Golowich and A. Smola, “Support vector method for function approximation, regression estimation, and signal processing,”in: M.C. Mozer, M.I. Jordan and T. Petsche, eds., Advances in Neural Information Processing Systems 9. Cambridge, MA: MIT Press, pp.281–287,1997.
[3] P.M.L. Drezet and R.F. Harrison, “Support vector machines for system identification,” in Proc. UKACC Int. Conf. Control’98 (Swansea,U.K.), Sept.1-4, pp.688–692,1998.
[4] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines. Cambridge, UK: Cambridge University Press, 2000.
[5] M.E. Tipping, “Sparse Bayesian learning and the relevance vector machine,” J. Machine Learning Research, Vol.1, pp.211–244, 2001.
[6] B. Schlkopf and A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press, 2002.
[7] K.L. Lee and S.A. Billings, “Time series prediction using support vector machines, the orthogonal and the regularized orthogonal leastsquares algorithms,” Int. J. Systems Science, Vol.33, No.10, pp.811–821, 2002.
[8] L. Zhang, W. Zhou and L. Jiao, “Wavelet support vector machine”, IEEE Trans. Systems, Man and Cybernetics, Part B, Vol.34, No.1,pp.34–39, 2004.
[9] W. Chu, S.S. Keerthi and C.J. Ong, “Bayesian support vector regression using a unified loss function”, IEEE Trans. Neural Networks,Vol.15, No.1, pp.29–44, 2004.
[10] S.A. Billings and S. Chen, “The determination of multivariable nonlinear models for dynamic systems,” in: C.T. Leondes, ed., Control and Dynamic Systems, Volume 7 of Neural Network Systems Techniques and Applications. San Diego: Academic Press, pp.231–278,1998
[11] H. Elliott, “Hybrid adaptive control of continuous-time systems,” IEEE Trans. on Automatic Control, vol. AC-27, pp. 419-426, 1982.
[12] P. J. Gawthrop, “Hybrid self-tuning control,” IEE Proc. D., Control Theory and Appl., vol. 127,pp. 229-236, 1980.
[13] K. Narendra, I. H. Khalifa and A. M. Annaswamy, “Error models for stable hybrid adaptive systems,” IEEE Trans. on Automatic Control, vol. AC-30, pp. 339-347, 1985.
[14] S. Chen and S.A. Billings, “Representation of non-linear systems: the NARMAX model,” Int. J. Control, Vol.49, No.3, pp.1013–1032, 1989.
[15] S. Chen, X. Hong, C.J. Harris and X.X. Wang,”Identification of Nonlinear Systems Using Generalized Kernel Models” IEEE Trans on Control Systems Technonlogy, vol 13, no. 3 pp. 401-411,2005
[16] S. Chen, S.A. Billings and W. Luo, “Orthogonal least squares methods and their application to non-linear system identification,” Int. J.Control, Vol.50, No.5, pp.1873–1896, 1989.
[17] S.A. Billings and S. Chen, “Extended model set, global data and threshold model identification of severely non-linear systems,” Int. J.Control, Vol.50, No.5, pp.1897–1923, 1989.
[18] J. H. Halton, “On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals,” Numerische Mathematic, vol. 2, pp84-90, 1960.
[19] J.C. Van Der Corput, “Verteilungsfunktionen,” Proc. Kon Akad. Wet., Amstrerdam, vol. 38, pp. 1058-1066, 1935
[20] G. Ridgeway, D. Madigan and T. Richardson, “Boosting methodology for regression problems,” in: D. Heckerman and J. Whittaker, eds., Proc. Artificial Intelligence and Statistics, 1999, pp.152–161.
[21] R. Meir and G. R¨atsch, “An introduction to boosting and leveraging,”in: S. Mendelson and A. Smola, eds., Advanced Lectures in Machine Learning. Springer Verlag, 2003, pp.119–184.
[22] S.M. Guo, L. S. Shieh, C. F. Lin, and J. Chandra, “State-space self-tuning control for nonlinear stochastic and chaotic hybrid systems,” Int, J. Birfurcation Chaos, vol. 11, no. 4, pp. 1079-1113, 2001.
[23] S. M. Guo, L. S. Shieh, G. Chen, and C. F. Lin, “Effective chaotic orbit tracker: prediction-based digital redesign approach,” IEEE Trans. on Circuits and Systems-I, Fundamental Theory and Applications, vol. 47, no. 11, pp.1557-1570, Nov. 2000.
[24] Y. S. Chen, J. S. H. Tsai and L. S. Shieh, “New conditioning dual-rate digital redesign scheme for continuous-time systems with saturating actuators,” IEEE Trans. on Circuits and Systems – I, Fundamental Theory and Applications, vol. 49, no. 12, pp. 1860-1870, 2002
[25] Y. C. Chang and H. M. Yen, “Adaptive output feedback tracking control for a class of uncertain nonlinear systems using neural networks,” IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 35, no. 6, pp. 1311-1316, 2005
[26] S. Chen, S.A. Billings and W. Luo, “Orthogonal least squares methods and their application to non-linear system identification,” Int. J.Control, Vol.50, No.5, pp.1873–1896, 1989.