簡易檢索 / 詳目顯示

研究生: 李建銘
Lee, Chien-Ming
論文名稱: 植入式生醫遙測天線實現與寬頻天線設計
The Implementation of Antenna for Implantable Biotelemetry System and the Design of Broadband Antenna
指導教授: 羅錦興
Luo, Ching-Hsing
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 123
中文關鍵詞: 倒F型共平面波導寬頻植入式整流天線
外文關鍵詞: Implantable, PIFA, CPW, Rectenna, Broadband
相關次數: 點閱:123下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一創新植入式無線生醫通訊系統架構。此系統由三種頻段組成:402 MHz資料傳送、433 MHz整流天線與2.4 GHz之喚醒電路。此三頻生醫通訊系統將可大大改善植入式感測裝置電池的使用時間。為了實現小型化且大頻寬之植入式天線設計,一個堆疊式架構的倒F型天線、與利用Π型輻射體結合兩L型或彎摺金屬微片的倒F型天線被提出。所提出的天線架構能激發多個共振模態。藉由適當地控制此多共振模態可分別得到寬頻操作與三頻天線操作之特性。為了測試植入式天線的特性,等效人體介質的調配是必要的。本文提出利用調配酒精重量百分比濃度與鹽巴可得到等效人體介質。所調配出的等效液體很適合用來驗證植入式天線。為了驗證寬頻或多頻段的植入式天線,寬頻的等效人體組織液也是必須的。文中亦發現豬前腿肉之介電特性剛好介於人之皮膚與肌肉組織。因此豬肉將被採用來測試多頻帶植入式天線。為了更容易與目前的健康照護監控系統結合,亦在文中提出可適用於無線網路與手持式通訊系統的寬頻天線設計。利用特殊圓形或環形共平面波導饋入的寬頻天線被提出應用於健康照護監控系統。為了避免干擾鄰近無線網路的波段如HIPERLAN (5150-5350 MHz)及WLAN (5725-5825 MHz),具兩帶拒濾波的寬頻天線亦被提出。最後由結果顯示此天線的寬頻特性將能涵蓋目前常用的無線網路或手持式通訊系統的頻段。
    為了印證所設計系統的實用性,外部基站天線的設計也是必須的。本文提出利用Moxon天線結構去分別實現400 MHz、433 MHz及2.4 GHz的印刷式Moxon天線設計。由結果證明本論文針對此生醫通訊系統所提出來的天線是可行的。甚至本文也利用晶片與電路整合三頻植入式天線去實現402 MHz資料傳遞與433 MHz整流天線。結果顯示本文提出的系統架構是可行的。該整流天線之射頻轉直流之最佳效率可達73%,將可利用外部射頻能量供給植入體內裝置或電池作充電動作。

    This thesis presents the novel biotelemetry architecture for implantable biotelemetry. The proposed system is composed of three bands: the 402 MHz data telemetry, the 433 MHz rectifying antenna (rectenna), and the 2.4 GHz wake-up radio. This triple-band biotelemetry system substantially improves the life time of the battery of implantable device. For the implementation of compact and broadband implantable antenna, a stacked implantable antenna, the Π-shape radiator with dual L-strips or dual meander-strips PIFA are proposed. The proposed antenna structure can excite multi-resonant frequencies. By properly controlling the multi-resonances, the broad bandwidth or the triple-band characteristics are obtained. For verifying the implantable antenna, developing the human simulating is required. The utilization of the different alcohol concentration with salts to develop the human simulating fluid is proposed. This proposed fluid is very suitable for verifying the implantable antenna. For verifying the broadband or multi-band implantable antenna, the broadband human simulating is necessary. It is found that the dielectric characteristic of front-leg of pork is similar to skin and muscle of human body. Thus, the test tissue is adopted the pork to verify the multiband implantable antenna. For the easy integration of present healthcare monitoring application, the broadband antenna is proposed to cover the wireless local network or mobile communication band. The special circular CPW-fed and annular CPW-fed broadband antenna are proposed for the healthcare monitoring application. To avoid interfering with nearby communication systems such as High Performance Radio LAN (HIPERLAN: 5150-5350 MHz) and Wireless Local Area Network (WLAN: 5725-5825 MHz), the broadband antenna with dual band-notched functions is proposed. Results show that their broadband performance can cover the useful WLAN and mobile communication bands.
    For verification of the proposed system, the designs of external antenna of base station are necessary. Here, the Moxon antenna structure is utilized to implement the printed antenna at 400 MHz, 433 MHz, and 2.4 GHz respectively. The experimental results show that the whole antennas are feasible for the proposed implantable biotelemetry system. Furthermore, this thesis also demonstrates the board level design of 402 MHz data telemetry and the design of 433 MHz implantable rectenna. Results show that the proposed system architectures are feasibility. The optimized RF-to-DC conversion efficiency of 433 MHz rectifier can reach to 73%. Hence, the proposed system has the rectifier that can rectify the RF energy into a dc voltage to power up the implantable device or electrify the battery.

    摘要 I ABSTRACT III 誌謝 V TABLE OF CONTENTS VI TABLE CAPTION VIII FIGURE CAPTION IX CHAPTER 1 INTRODUCTION 1 1.1 Preview of implantable biotelemetry 1 1.2 Motivation and goals 3 1.3 Preview of implantable antenna, Moxon antenna and broadband antenna 7 1.4 Organization of the dissertation 12 CHAPTER 2 THE IMPLEMENTATIONS OF ANTENNA FOR IMPLANTABLE SYSTEM 15 2.1 Preview of implantable antenna 15 2.2 Development of human simulating tissues 17 2.2.1 The trend approach of developing the human tissues 18 2.2.2 The novel approach of developing the human tissues 20 2.2.3 The trend methods to verify the multi-band implantable antenna 21 2.2.4 The test tissue to verify the multi-band implantable antenna 21 2.3 The SAR (Specific Absorption Rate) standard 23 2.4 Stacked broadband implantable antenna 25 2.4.1 Antenna design 25 2.4.2 Results and discussions 27 2.5 Π-shape with double L-strips implantable PIFA 30 2.5.1 Antenna design 30 2.5.2 Results and discussions 32 2.6 Bandwidth enhancement of PIFA for implantable biotelemetry 35 2.6.1 Antenna design 35 2.6.2 Results and discussions 39 2.7 Compact triple-band implantable antenna 42 2.7.1 Antenna design 42 2.7.2 Results and discussions 44 2.8 Exterior antenna design 48 2.8.1 Moxon antenna design for MICS band, 433 MHz ISM band and 2.4 GHz ISM band 48 2.9 Summaries 51 CHAPTER 3 THE DESIGN OF BROADBAND ANTENNA 52 3.1 Introduction 52 3.2 Circular CPW-fed monopole antenna for UWB application 53 3.2.1 Antenna design 53 3.2.2 Results and discussions 54 3.3 Wideband monopole antenna for various mobile communication applications 59 3.3.1 Antenna design 59 3.3.2 Results and discussions 61 3.4 UWB printed disk monopole antenna with dual-band notched functions 68 3.4.1 Antenna design 68 3.4.2 Results and discussions 70 3.5 Dual band-notched ultra-wideband monopole antenna with annular CPW-feeding structure 74 3.5.1 Antenna design 74 3.5.2 Results and discussions 76 3.6 Summaries 80 CHAPTER 4 THE ANTENNA TESTING AND LINK BUDGET DEFINING FOR THE PROPOSED SYSTEM 81 4.1 Antenna testing for the triple-band implantable biotelemetry 81 4.2 Link budget (400 MHz/433 MHz/ 2.45 GHz) 82 4.2.1 Data telemetry at MICS band (uplink from implant) 83 4.2.2 433 MHz wireless powering (downlink to implant) 85 4.2.3 Implantable rectenna at ISM band 433 MHz 87 4.3 The implementations of the proposed System by board level design 89 4.3.1 The implementation of 400 MHz data biotelemetry 89 4.3.2 Implantable rectenna at ISM band 433 MHz 95 CHAPTER 5 CONCLUSIONS 111 References 113 Publication list 121 VITA 123

    [1] D. Hodgins, A. Bertsch, N. Post, M. Frischholz, B. Volckaerts, J. Spensley, J. M. Wasikiewicz, H. Higgins, F. von Stetten, and L. Kenney, “Healthy aims: developing new medical implants and diagnostic equipment”, IEEE Pervasive Computing., vol.7, (1), pp. 14-21, Jan., 2008
    [2] R. D. Beach, F. v. Kuster, and F. Moussy, “Subminiature implantable potentiostat and modified commercial telemetry device for remote glucose monitoring,” IEEE Trans. Instrument. Meas., vol. 48, (6), pp. 1239-1245, Dec., 1999
    [3] W. Liu, K. Vichienchom, M. Clements, S. C. DeMarco, C. Hughes, E. McGucken, M. S. Humayun, E. De Juan, J. D. Weiland, and R. Greenberg, “A Neuro-Stimulus Chip with Telemetry Unit for Retinal Prosthetic Device,” IEEE J. Solid State Circuits., vol. 35, (10), pp. 1487-1497, Oct., 2000
    [4] D. Scribner, L. Johnson, P. Skeath, R. Klein, D. Ilg, L. Wasserman, N. Fernandez, W. Freeman, J. Peele, F. K. Perkins, E. J. Friebele, W. E. Bassett, J. G. Howard, and W. Krebs, “A Retinal Prosthesis Technology Based on CMOS Microelectronics and Microwire Glass Electrodes,” IEEE Trans. Biomedical Circuits and Systems., vol. 1, (1), pp. 73-84, March, 2007
    [5] W. –D. Lai, and C. T. M. Choi, “Incorporating the Electrode-Tissue Interface to Cochlear Implant Models,” IEEE Trans. Magnetics., vol. 43, (4), pp. 1721-1724, April, 2007
    [6] S. K. An, S.-I. Park, S. B. Jun, C. J. Lee, K. M. Byun, J. H. Sung, B. S. Wilson, S. J. Rebscher, S. H. Oh, and S. J. Kim., “Design for a Simplified Cochlear Implant System,” IEEE Trans. Biomed. Eng., vol. 54, (6), pp. 973-986, June, 2007
    [7] F.v. Stetten, S. Kerzenmacher, A. Lorenz, V. Chokkalingam, N. Miyakawa, R. Zengerle, and J. Ducree, “A One-Compartment, Direct Glucose Fuel Cell for Powering Long-Term Medical Implants,” Proc. 19th IEEE Int’l Conf. Micro Electro Mechanical Systems (MEMS 06), pp. 934–937, 2006
    [8] M. Leonardi, P. Leuenberger, D. Bertrand, A. Bertsch, and P. Renaud, “A Soft Contact Lens with a MEMS Strain Gage Embedded for Intraoccular Pressure Monitoring,” Proc. 12th IEEE Int’l Conf. Transducers, Solid-State Sensors, Actuators, and Microsystems (Transducers 03), vol. 2, (8-12), pp. 1043-1046, June, 2003
    [9] S. Boyer, M. Sawan, M. Abdel-Gawad, S. Robin, M. M. Elhilali, “Implantable selective stimulator to improve bladder voiding: design and chronic experiments in dogs”, IEEE Trans. Rehabilitation Engineering., vol. 8, (4), pp. 464-470, Dec., 2000
    [10] W. G. Scanlon, N. E. Evans, and Z. M. McCreesh, “RF performance of a 418 MHz radio telemeter packaged for human vaginal placement,”IEEE Trans. Biomed. Eng., vol. 44, no. 5, pp. 427–430, May, 1997.
    [11] W. G. Scanlon, N. E. Evans, and J. B. Burns, “FDTD analysis of closecoupled 418 MHz radiating devices for human biotelemetry,” Phys. Med. Biol., vol. 44, (2), pp. 335–345, Feb., 1999
    [12] G. C. Crumley, N. E. Evans, J. B. Burns, and T. G. Trouton, “On the design and assessment of a 2.45 GHz radio telecommand system for remote patient monitoring,” Med. Eng. Phys., vol. 20, (10), pp. 750–755, Mar., 1999
    [13] European Telecommunication Standards Institute [Online] http://www.etsi.org
    [14] “Medical Implant Communications Service (MICS) federal register,” Rules and Regulations, vol. 64, (240), pp. 69926-69934, Dec., 1999
    [15] R. D. Beach, R. W. Conlan, M. C. Godwin, and F. Moussy, “Towards a miniature implantable in vivo telemetry monitoring system dynamically configurable as a potentiostat or galvanostat for two- and three-electrode biosensors,” IEEE Trans. Instrument. Meas., vol. 54, (1), Feb., 2005
    [16] Medical implantable RF transceiver ZL70101 data sheet Zarlink Semiconductor., Ottawa, ON, Canada, Oct., 2006
    [17] R. –S. Yahya, and J. Kim, “Implanted antennas inside a human body: simulations, designs, and characterizations”, IEEE Trans. Microwave Theory and Tech., vol. 52, (8), pp. 1934-1943, Aug., 2004
    [18] C. -M. Lee, T. -C. Yo, C. –H, Luo, C. –H. Tu, and T. –Z. Juang, “Compact broadband stacked implantable antenna for biotelemetry with medical devices”, Electron. Lett., vol. 43, (12), pp. 660-662, June, 2007
    [19] W. –C. Liu, F. –M. Yeh and M. Ghavami, “Miniaturized implantable broadband antenna for biotelemetry communication”, Microwave Opt Technol Lett., vol. 50, (9), pp.2407-2409, Sep., 2008
    [20] C. -M. Lee, T. –C. Yo, F. –J. Huang, and C. –H. Luo, “Dual-resonant π-shape with double L-strips PIFA for implantable biotelemetry”, Electron. Lett., vol. 44, (14), pp. 837-838, July, 2008
    [21] C. -M. Lee, T. –C. Yo, F. –J. Huang, and C. –H. Luo, “BANDWIDTH ENHANCEMENT OF PLANAR INVERTED-F ANTENNA FOR IMPLANTABLE BIOTELEMETRY”, Microwave Opt Technol Lett., vol. 51, (3), pp. 749-752, March., 2009
    [22] T. Karacolak, A. Z. Hood, and E. Topsakal, “Design of a Dual-Band Implantable Antenna and Development of Skin Mimicking Gels for Continuous Glucose Monitoring”, IEEE Trans. Microwave Theory and Tech., vol. 56, (4), pp. 1001-1008, April, 2008
    [23] C. Gabriel, S. Gabriel, and E. Corthout, “The dielectric properties of biological tissues: I. Literature survey”, Phys. Med. Biol., vol. 41, pp. 2231-2249, 1996
    [24] S. Gabriel, R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol. 41 (1996), 2251–2269
    [25] S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues”, Phys. Med. Biol., vol. vol. 41, pp. 2271-2293, 1996
    [26] T. Yilmaz, T. Karacolak, and E. Topsakal, “Characterization and Testing of a Skin Mimicking Material for Implantable Antennas Operating at ISM Band (2.4 GHz-2.48 GHz)”, IEEE Antennas and wireless propagation Letters., vol. 7, pp. 418-420, 2008
    [27] P. Soontornpipit, C. M. Furse, C. C. You, “Miniaturized Biocompatible Microstrip Antenna Using Genetic Algorithm”, IEEE Trans. Antennas Propag., vol. 53, (6), pp. 1939-1945, June, 2005
    [28] IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3KHz to 300GHz, IEEE Standard C95.1-1999, 1999
    [29] http://www.moxonantennaproject.com
    [30] IEEE Standard 145-1983, IEEE standard definitions of terms for antennas, pp. 7, 22 June 1983.
    [31] J. D. Kraus, “Antennas Since Hertz and Marconi,” IEEE Trans. Antennas Propag., vol. 33, (2), pp. 131-137, Feb., 1985
    [32] D. M. Pozar, “An Overview of Wireless Systems and Antennas,” IEEE AP-S International Symposium, vol. 2, pp. 566-569, July 2000.
    [33] M. J. Ammann and Z. N. Chen, “Wideband monopole antennas for multi-band wireless systems,” IEEE Antennas and Propag. Mag., vol. 45, No. 2, pp. 146-150, April, 2003
    [34] J. Jung, K. Seol, W. Choi, and J. Choi, “Wideband monopole antenna for various mobile communication applications”, Electron. Lett., vol. 41, pp. 1313-1314, Nov., 2005
    [35] C. –C. Lin, Y. –C. Kan, L. –C. Kuo, and H. –R. Chuang, “A planar triangular monopole antenna for UWB communication”, IEEE Microw. Wirel. Components Lett., vol. 15, (10), pp. 624-626, Oct., 2005
    [36] S. –W. Su, K. L. Wong, and C. –L. Tang, “ULTRA-WIDEBAND SQUARE PLANAR MONOPOLE ANTENNA FOR IEEE 802.16a OPERATION IN THE 2–11-GHz BAND”, Microwave Opt Technol Lett., vol. 42, (6), pp. 463–466, Sep., 2004
    [37] K. L. Wong, C. H. Wu, and S. W. Su, “Ultrawide-band square planar metal-plate monopole antenna with a trident-shaped feeding strip”, IEEE Trans. Antennas Propag., vol. 53, (4), pp. 1262-1269, April, 2005
    [38] H. C. Liu, T. S. Horng and N. G. Alexopoulous, “Radiation of printed antennas with a coplanar waveguide-fed,” IEEE Trans. Antennas Propag., vol. 43, (10), pp. 1143-1148, Oct. 1995
    [39] J. W. Greiser, "Coplanar stripline antenna," Microwave Journal, vol. 21, pp. 47-49, 1976.
    [40] W. Wang, S. S. Zhong, and S. B. Chang, “A novel wideband coplanar-fed monopole antenna”, Microwave Opt Technol Lett., vol. 43, (1), pp. 50-52, Oct., 2004
    [41] C. Y. Huang, and W. C. Hsia, “Planar elliptical antenna for ultra-wideband communications”, Electron. Lett., vol. 41, (6), pp. 296-297, Mar. 2005
    [42] X. L. Liang, S. S. Zhong, W. Wang, and F. W. Yao, “Printed annular monopole antenna for ultra-wideband applications”, Electron. Lett., vol. 42, (2), pp. 135-136, Jan., 2006
    [43] W. C. Liu, and P. C. Kao, “CPW-fed triangular monopole antenna for ultra-wideband operation”, Microwave Opt Technol Lett., vol. 47,(6), pp. 580-582, Dec. 2005
    [44] J. Liang, L. Guo, C. C. Chiau, X. Chen, and C. G. Parini, “Study of CPW-fed circular disc monopole antenna for ultra wideband applications”, IEE, Proceeding,. Microwave, Antenna and Propag., pp. 520-526, Dec., 2005
    [45] T. A. Denidni, and M. A. Habib, “Broadband printed CPW-fed circular slot antenna”, Electron. Lett., vol. 42, (3), pp. 135-136, Feb., 2006
    [46] E. S. Angelopoulos, A. Z. Anastopoulos, D. I. Kaklamani, A. A. Alexandridis, F. Lazarakis, and K. Dangakis, “Circular and elliptical CPW-fed slot and microstrip-fed antennas for ultrawideband applications,” IEEE Antennas and Wireless Propagat. Lett., vol. 5, (1), pp. 294-297, Dec., 2006
    [47] FCC, “First Report and Order on Ultra-Wideband Technology,” Tech. Rep., 2002.
    [48] W. D. Prather, C. E. Baum, J. M. Lehr, J. P. O'Loughlin, S. Tyo, J. S. H. Schoenberg, R. J. Torres, T. C. Tran, D. W. Scholfield, J. Gaudet, and J. W. Burger, “Ultra-wideband source and antenna research”, IEEE Trans. Plasma Sci., vol. 28, (5), pp. 1624-1630, Oct., 2000
    [49] J. Liang, L. Guo, C. C. Chiau, X. Chen, and C. G. Parini, “Study of CPW-fed circular disc monopole antenna for ultra wideband applications”, IEE, Proceeding,. Microwave, Antenna and Propag., pp. 520-526, Dec., 2005
    [50] K. Chung, T. Yun, and J. Choi, “Wideband CPW-fed monopole antenna with parasitic elements and slots”, Electron. Lett., vol. 40, (17), pp. 1038-1040, Aug., 2004
    [51] C. M. Lee, T. C. Yo, C. H. Luo, C. -H. Tu, and Y. -Z. Juang, "Broadband Disk Monopole Antenna with a Circular CPW-Feeding Line", IEEE AP-S International Symposium, pp. 773-776, Jun., 2007
    [52] C. –H. Luo, C. -M. Lee, W. –S. Chen, C. –H. Tu, and Y. –Z. Juang, “Dual-band notched ultra-wideband monopole antenna with an annular CPW-feeding line”, Microwave Opt Technol Lett., vol. 49, (10), pp. 2376-2379, Oct., 2007
    [53] W. J. Lui, C. H. Cheng, Y. Cheng, and H. Zhu, “Frequency notched ultra-wideband microstrip slot antenna with fractal tuning stub”, Electron. Lett., vol. 41, (6), pp. 294-296, March, 2005
    [54] Y. Gao, B. L. Ooi, and A. P. Popov, “Band-notched ultra-wideband ring-monopole antenna”, Microwave Opt Technol Lett., vol. 48, (1), pp. 125-126, Jan., 2006
    [55] K. Chung, J. Kim, and J. Choi, “Wideband microstrip-fed monopole antenna having frequency band-notch function”, IEEE Microwave and Wireless Component Lett., vol. 15, (11), pp. 766-768, Nov., 2005
    [56] C. Y. Huang, W. C. Hsia, and J. S. Kuo, “Planar ultra-wideband antenna with a band-notched characterictic”, Microwave Opt Technol Lett., vol. 48, (1), pp. 393-396, Jan., 2006
    [57] W. S. Lee, W. G. Lim, and J. W. Yu, “Multiple band-notched planar monopole antenna for multiband wireless systems”, IEEE Microwave and Wireless Component Lett., vol. 15, (9), pp. 576-578, Sep., 2005
    [58] W. S. Lee, D. Z. Kim, K. J. Kim, and J. W. Yu, “Wideband planar monopole antennas with dual band-notched characteristics”, IEEE Trans. Microw. Theory Tech., vol. 54, (6), pp. 2800-2806, June, 2006
    [59] C. –M. Lee, T. –C. Yo, C. –H. Luo, W. –S. Chen, C. –H. Tu, and Y. –Z. Juang, “Ultra-Wideband Printed Disk Monopole Antenna with Dual-Band Notched Functions”, IEEE Annual Wireless and Microwave Technology Conference, pp. 1-4, Dec., 2006
    [60] IEEE Standard 1528, “IEEE RECOMENDED PRACTICE FOR DETERMINING THE PEAK SPATIAL-AVERAGE”, 2003.
    [61] Ansoft High Frequency Structure Simulator (HFSS), Ver. 10.1, Ansoft Corporation, 2006
    [62] M. Ballen, M. Kanda, C. K. Chou, and Q. Balzano, “Formulation and characterization of tissue simulating liquids used for SAR measurement,” in Proc. Bioelectromagnetics Soc. 23rd Ann. Meeting, vol. 14-3, p. 80, 2001
    [63] A. Peyman and C. Gabriel, “Tissue equivalent liquids for SAR measurement at microwave frequencies,” in Proc. Bioelectromagnetics Soc. 24th Ann. Meeting, vol. P-53, pp. 184-185, 2002
    [64] J. P. Grant, R. N. Clarke, G. T. Symm, and N. M. Spyrou, “A critical study of the open-ended coaxial line sensor technique for RF and microwave complex permittivity measurements,” J. Phys. E: Sci. Instrum., vol. 22, pp. 757–770, 1989
    [65] K. Fukunaga, S. Watanabe, and Y. Yamanaka, “Dielectric Properties of Tissue-Equivalent Liquids and Their Effects on Specific Absorption Rate”, IEEE Trans. Electromagnetic Compatibility., vol. 46, (1), pp. 126-129, Feb., 2004
    [66] K. Jaehoon and R. –S. Yahya, “PLANAR INVERTED-F ANTENNAS ON IMPLANTABLE MEDICAL DEVICES:MEANDERED TYPE VERSUS SPIRAL TYPE”, Microwave Opt Technol Lett., vol. 48, (3), pp. 567-572, March, 2006
    [67] T. C. Yo, C. M. Lee, C. H. Luo, C. -H. Tu, Y. -Z. Juang, "Stacked Implantable Rectenna for Wireless Powering the Medical Implants," IEEE AP-S International Symposium, pp. 3189-3192, Jun., 2007
    [68] IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3KHz to 300GHz, IEEE Standard C95.1-2005, 2005
    [69] X. -L. Liang, S. -S. Zhong, W. Wang, and F. -W. Yao, “Printed annular monopole antenna for ultra-wideband applications”, Electron. Lett., vol. 42, (2), pp. 71-72, Jan., 2006.
    [70] K. L Wong, T.C. Tseng, and P.L. Teng, “Low-profile ultra-wideband antenna for mobile phone applications”, Microwave Opt Technol Lett., vol. 43, pp. 7-9, July, 2004
    [71] F. R. Hsiao and K. L Wong, “An internal ultra-wideband metal-plate monopole antenna for UMTS/WLAN dual-mode mobile phone”, Micro. Opt. Technol. Lett., vol. 45, pp. 265-268, May. 2005
    [72] K. L Wong, W. C. Su, and F. S. Chang, “Wideband internal folded planar monopole antenna for UMTS/Wimax foder-type mobile phone”, Microwave Opt Technol Lett., vol. 48, pp. 324-327, Feb., 2006
    [73] F. Kocer, and M. P. Flynn, “A new transponder architecture with on-chip ADC for long range telemetry application,” IEEE Journal of Solid-State Circuits, vol. 41, (5), pp.1142-1148, May, 2006
    [74] HSMS-286x Series, Surface Mount Microwave Schottky Detector Diodes, Data Sheet, Avago technology
    [75] W. C. Brown, J. R. Mims, N. I. Heenan, “An experimental microwave-powered helicopter,” IRE International convention record., vol. 13, (5), pp. 225-235, March, 1965
    [76] ZEDC-15-2B, Coaxial Directional Coupler, 1-1000 MHz, Data Sheet, Mini-Circuits
    [77] ZHL-20W-13, Coaxial Amplifier, 20-1000 MHz, Data Sheet, Mini-Circuits
    [78] S. Shibuya, “A Basic Atlas of Radio-Wave Propagation”, John Wiley and Sons, 1987
    [79] International Telecommunication Union, “Recommendation ITU-R SA.1346”, 1998.
    [80] R. Pettai, “Noise in Reciving Systems”, John Wiley and Sons, 1984.
    [81] J. D. Kraus and R. J. Marhefka, “Antennas for all applications”, 2003
    [82] C. A. Balanis, “Antenna Theory: Analysis and Design”, 2nd ed., John Wiley and Sons, 1997
    [83] P. Kolinko, L. E. Larson, “Passive RF Receiver Design for Wireless Sensor Networks”, IEEE MTT-S International., pp. 567-570, 2007
    [84] 2005 CFR Title 47, vol. 1, Chapter I “Federal Communications Commission", Part 15 "Radio Frequency devices", Section 15.247” Operation within the band 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz”
    [85] MAX 7031, Transceiver, 300-500 MHz, Data Sheet, Maxim
    [86] 尤宗旗, 國立成功大學電機所博士論文 “應用具諧波抑制與圓極化平面整流天線之無線傳能充電系統設計”, 97年6月。

    下載圖示 校內:2010-02-10公開
    校外:2011-02-10公開
    QR CODE